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Summary
Evolutionary algorithms, a type of advanced machine learning, are used to optimise
a millimetre scale satellite thruster nozzle. Differences between the mathematical
optimal design and physical reality occur due to performance losses, namely friction
along the walls which generates a boundary layer effect. This study aimed to utilise
this machine learning to optimise a parabolic nozzle shape at the millimetre scale.
Parabolic nozzles, characterised by their curved shape, are regarded as one of the
best designs for rocketry at the metre scale. This study provides evidence that the
parabolic geometry still outperforms conical geometry at the millimetre scale. The
optimised parabolic nozzles excelled in directing exhaust flow out of the nozzle in
the correct direction, while also producing high thrust and fuel efficiency.
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Investigation into Geometric Characteristics of Micro Parabolic Nozzle and
Multi-Objective Design Optimisation

by Jack Gale

Micro-satellite propulsion provides a means for accessible long-term space experi-
mentation and research. One component of propulsion systems is the nozzle, a ge-
ometric device which converts enthalpy to thrust. This study aimed to characterise
how scale affects key performance metrics of nozzles, namely thrust, divergence ef-
ficiency, and specific impulse, which assisted in developing an optimised set of noz-
zles thereby maximising these metrics. This was accomplished using Computational
Fluid Dynamics (CFD) simulations and evolutionary algorithms. A 2-Dimensional
axisymmetric mesh was constructed using Rao’s parabolic nozzle design, where key
geometric values were parameterised in order to investigate how changing different
aspects of the nozzle affected the output performance metrics. This flexible design
was used to conduct CFD simulations of 432 unique parabolic designs. These were
used to construct surrogate models with high confidence, which could predict out-
put performance characteristics given the set of input geometries. These models
had errors of less than 0.05 % on the validation data. Thus, surrogate assisted evo-
lutionary algorithms were used to optimise output parameters. A Pareto front was
formed and was most defined with respect to the divergence efficiency and specific
impulse, which was an inversely correlated relationship. The thrust also displayed
Pareto front qualities when analysed against specific impulse and divergence effi-
ciency, but was capped due to parametric bounds. The maximum thrust achieved
was 0.362 N, maximum divergence efficiency was 99.68 %, and maximum specific
impulse was 110.3 s. Some flow splitting was observed in the high divergence ef-
ficiency verification case, but was otherwise not observed in the other verification
cases. The parabolic nozzle geometry produced and maintained very good diver-
gence efficiency characteristics, where the lowest non-dominated Pareto solution
yielded a divergence efficiency of 99.10 %, which is only a 0.7 % decrease over similar
conical divergence efficiency optimised nozzles.
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Chapter 1

Introduction

1.1 Satellites and space

The Wright brothers pioneered flight in 1903, using an understanding of aerody-
namics to generate lift. Two world wars accelerated aircraft design and challenged
how far our understanding of thrust and lift, which is now more widely grouped
into the study of fluid and aerodynamics, could propel aerospace engineering. New
forms of propulsion were experimented with as the limitations of propellors and
piston-combustion engines were reached. This research culminated in 1942 during
the first test of the V2 rocket, which used the latest materials and aerospace engi-
neering to launch the rocket to an altitude of 84.5 km at supersonic speeds. The V2
rocket used a liquid propellant engine to generate thrust, and was the first artificial
object to reach space, reaching an altitude of 176 km, well above the conventional
100 km Karman line that is mostly accepted as the boundary of space.

Following the world wars and fuelled by the cold war, the space race began.
Engineering and science pushed the boundaries of rocket-propelled aircraft. Designs
for intercontinental ballistic missiles were modified for space faring missions, such
as the first artificial satellite, Sputnik 1; launched in 1957 atop a modified R-7 missile.
Multi-stage rocketry allowed vehicles to exceed previous limitations, with the Saturn
V system taking humans to the Moon in 1969. Since then, the number of artificial
satellites has risen exponentially and is projected to reach an estimated 100,000 [1]
active satellites by 2030.

In-space propulsion has become increasingly relevant with the need for satellite
manoeuvrability, station keeping, and efficient deep-space propulsion. While chem-
ical propulsion techniques produce high levels of thrust, they are inefficient with
their use of fuel [2]. Alternative propulsion techniques were pioneered in the 1960’s,
with Gridded Ion engines and Hall Effect Thrusters [3]. These electric propulsion
devices are lighter weight, more fuel efficient, and have longer operational lifetimes
than their chemical counterparts [4].

1.1.1 Electric Propulsion

Electric Propulsion (EP) systems operate using three key subsystems: a propellant
system, a power system, and thrust system[5]. These work together to generate
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a plasma and accelerate the propellant, which produces low but enduring levels
of thrust. EP systems achieve specific impulse in the range of hundreds to a few
thousand seconds, while chemical propulsion can only achieve specific impulse of
hundreds of seconds [4, 5].

EP can be broadly classified into three classes, which differ in their approach to
producing thrust. These classes are: electrostatic, electromagnetic, and electrother-
mal. Electrostatic propulsion systems apply electric fields on ionised gasses to in-
duce thrust, where an external cathode is then used to neutralise the ionised gas
on exit. Electromagnetic propulsion applies an electromagnetic field on ions to in-
duce thrust and does not rely on an external cathode to neutralise the expelled ions.
Electrothermal propulsion systems are hybrid chemical and EP systems to convert
thermal energy into kinetic energy which induces thrust via an expelled gaseous
fuel[3].

The Microwave Electrothermal Thruster (MET) is an electrothermal EP system
being developed at Kyushu University [6]. It uses microwave energy to generate
plasma in a cavity through collisions between free electrons and heavy particles,
which is used to heat a propellant and expelled as thrust[2, 6].

FIGURE 1.1: The Space Shuttle rocket engine during takeoff,
with nozzles on boosters and the RS-25 main engines. (Image
from: https://www.esa.int/Science_Exploration/Human_and_
Robotic_Exploration/Space_Shuttle/Last_Space_Shuttle_

mission_launch2

However, all these systems require a way to direct and manage their exhaust.
Geometrical devices can be used to direct, compress, and expand fluid flow from
the combustion/heating chamber and expel out in a usable fashion. While physi-
cally nozzles may vary in design, they all operate on the same basis; nozzles utilise
Bernoulli’s principle to accelerate and increase the velocity of the fluid that passes
through them. This, in turn, leverages the exhaust from chemical or EP systems into
usable thrust.

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Space_Shuttle/Last_Space_Shuttle_mission_launch2
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Space_Shuttle/Last_Space_Shuttle_mission_launch2
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Space_Shuttle/Last_Space_Shuttle_mission_launch2
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1.2 Computational Fluid Dynamics

CFD relies on the mathematical foundations laid down by Euler, whose equations
described the flow of an ideal frictionless fluid, Navier, who introduced viscosity to
Eulers Equations and generalised them to real fluids, and Stokes, whose equations
linked viscosity to strain in a fluid. It is within the world of Navier-Stokes Equations
that CFD lives. However, these Equations are generally intractable except for ide-
alised and trivial one and two-dimensional flows within very simple geometries.
The finite difference methodology for the manual computation of fluid dynamic
problems allowed some aspect of real world problems to be analysed, but it was
not until electronic computing became available that modern fluid dynamic solvers
evolved into what we know today[7].

Many problems that plague CFD are very difficult to faithfully account for within
the aforementioned equations, and so different models have been built which aim to
approximate and capture the essential workings. While some of the earliest applica-
tions of CFD were of an engineering interest, the first was done with a regard to the
physics within the Los Alamos National Laboratory (Harlow, 1957)[7]. The needs
of each application of CFD have derived different methods of providing a solution,
but all CFD problems first require a domain in which the problem be described and
solved.

1.2.1 Meshing

FIGURE 1.2: Different mesh construction techniques. (Image from:
[8])

In order to complete any kind of simulation, a mesh must be created that repre-
sents the problem which we intend to solve. This mesh can be both 2-dimensional
and 3-dimensional, and represents where fluid may flow. The mesh can be more
simply defined as a grid of nodes, with lines connecting the nodes. The resultant
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cell geometry can be structured or unstructured: a structured mesh contains quadri-
lateral cells and may be referred to as a topological parallelpiped grid, while an un-
structured mesh may contain any kind of polygon. While unstructured grids may
be appealing and easy to build for complex geometries, structured grids are prefer-
able for their ease of use within the CFD mathematical framework owing to their
numerical efficiency[8].

While there are two methods embedded within the CFD system that pertain
to how the mesh represents the fluid dynamics problem, the mesh is consistently
treated as the fluid flow domain with each cell being described as a control volume.
The edges of the mesh, where the cell grid ends, are where we define boundary condi-
tions. These may represent a rigid wall or solid surface which the fluid will interact
with, an outlet where the fluid is allowed to leave and is no longer simulated, an
inlet through which the fluid is input into the simulated space, and sometimes an
axis, around which the domain is assumed to be mirrored, but not simulated.

FIGURE 1.3: An example of a 2D structured, axisymmetric
Converging-Diverging (CD) nozzle mesh.

By altering the boundary conditions, a single mesh can be used to simulate a
variety of external and fluid conditions.

1.2.2 Finite Methods

Understanding the physics behind the engine is essential in creating simulated flow
fields which approximate real world physics well. The mathematical system of
CFD typically uses one of two core concepts to solve the flow domain described
by the mesh, these being the Finite Element Method (FEM) or the Finite Volume
Method (FVM). Both methods use a mesh to discretize the problem. The working
principle of FVM forces conservation of mass, where the mass flow into each cell
is equal to the mass flow out. This is done by: estimating the flow velocity, mass
flow rate, momentum, pressure, etc, of each cell in the mesh, then calculating the ag-
gregate mass and momentum imbalance across all cells, before solving Taylor Series
linearised equations which represent the fluid flow. Only when the aggregate im-
balance falls below a tolerance (or threshold) is the solution found. The set of simul-
taneous equations are derived from the Navier-Stokes Equations. In this way, fluid
dynamics behaviour is simulated robustly for well defined problems and meshes[7,
8]. The fundamental concept behind these Equations starts with Newton’s second
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law, as shown in eq. (1.1).
F = ma (1.1)

The Net Viscous Force/vol must be defined; = µ∇2V⃗
Thus, we can define the governing Equations for CFD as follows:
Differential Form of Momentum Conservation (in the form of eq. (1.1)):

−∂P
∂x

+ µ∇2u = ρ(u
∂u
∂x

+ v
∂u
∂y

)

−∂P
∂y

+ µ∇2v = ρ(u
∂v
∂x

+ v
∂v
∂y

)

−∇P + µ∇2V⃗ = ρ(V⃗ · ∇)V⃗

(1.2)

We can then define an Integral Form of Momentum Conservation:∫
S

ρ(V⃗ · n̂)dS = −
∫

S
Pn̂dS + F⃗visc (1.3)

Following this, we then must define a Differential Form of Mass Conservation:

∂v
∂x

+
∂v
∂y

= 0 (1.4)

Which allows us to define the Integral Form of Mass Conservation:∫
S
(V⃗ · n̂)dS = 0 (1.5)

FIGURE 1.4: Conservation of cell properties using FVM on a simple
mesh. (Image from: [8])
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These are the fundamental equations for CFD fluid flow and are solved for every
cell over each iteration. However, these equations are non-linear and are computa-
tionally too expensive to solve fully. Some assumptions must be made using this
model in order to reduce these non-linear equations. These assumptions depend on
the specific software used, but often include a steady flow assumption, incompress-
ibility of the fluid, and Newtonian behaviour. Thus, FVM is solved numerically for
each cell. Conservation is built in to FVM, illustrated by Figure 1.4, as each cell
is solved by forcing conservation before solving. Error is introduced by interpo-
lating cells to single points of information describing the whole cell, including cell
edges and boundaries. Finer resolution of the mesh reduces this induced error but
increases the solve time[8].

1.3 Multi-Objective Design Optimisation

MDO is fundamentally the sport of balancing competing objectives when designing
systems or components. In the context of rocketry and nozzle design, thrust and
fuel consumption are competing interests that are desirable to respectively maximise
and minimise simultaneously. The problem arises that one conflicts with the other;
to generate more thrust, you may increase the amount of fuel you use (per second).
In producing solutions which attempt to optimise both objectives simultaneously, a
set of solutions which may trade one objective for another will be produced and is
known as a set of Pareto-optimal solutions.

Due to the complexity of solving MDO problems of many dimensions, Evolu-
tionary Algorithm (EA)s have been adopted into the method for searching and solv-
ing MDO problems; as opposed to single-objective problems in which EAs would be
unnecessarily complex for the solving of such problems. EAs are stochastic search
techniques that mimic biological processes to find the best solution to a problem
and can be thought of as an algorithmic replication of natural selection and genetics.
Terms used in EAs are interchangeable with natural biological processes; iterations
are commonly referred to as generations, etc. As such, EAs use three fundamental
operations: selection, crossover, and mutation. Selection guides which individuals
in a population are best to preserve into the next iteration, while crossover breeds two
selected individuals and merges their properties, and mutation may take any indi-
vidual and randomly change one parameter as it transfers between iterations[9].

Classical calculus-based optimisation algorithms use derivative information to
gauge their performance, while EAs use direct search methods to find results. This
results in a slower but more robust optimisation method which can be easily trans-
lated across disciplines. EAs are further set apart by their population approach,
which allows them to search multiple solution fronts simultaneously using multiple
individuals during each iteration. Multiple solution fronts are further explored fully
by EAs using stochastic operators, as oppose to deterministic ones. Advantages of
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this random sampling and search method are varied; most prominently, they are
simple to implement and have diverse applicability[10].

Surrogate Assisted Evolutionary Algorithms

A Surrogate Assisted Evolutionary Algorithm (Surrogate Assisted Evolutionary Al-
gorithm (SAEA)) is a subset of EAs which aims to bring the computational cost
down. Many EAs are conducted on computationally expensive problems, like CFD.
This impediment has forced the implementation of computationally cheap, approx-
imate models to be integrated into a standard MDO search. These "surrogates" can
be built using data from all previous generations of an EA search, and are used to
predict performance characteristics of systems without actually conducting a test
i.e. conducting a CFD simulation. This must periodically be checked against the
true test, with the surrogate models being rebuilt should they fall out of reasonable
margins[11].
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Chapter 2

A Review of Current Literature

2.1 Laval Nozzles

Nozzles first saw widespread adoption during the industrial revolution in steam
engines. Most famously, Gustaf de Laval designed a CD nozzle which has since
become synonymous with his name[12]. CD nozzles work because the mass flow
rate of fluids is constant through a constrained path. CD nozzles have three sections
which describe them: the convergent and divergent sections, and the throat. As the
fluid moves through the converging entrance to the nozzle, it is compressed until
it reaches the throat. Speeds of fluid through the convergent portion are subsonic,
where the nozzle will accelerate it to keep the mass flow rate constant. At the throat
it will locally reach sonic speeds. Once through, it will continue to accelerate at
supersonic and evolve through the diverging portion of the nozzle, which shapes
and guides the exhaust and is crucial in design for such operations[5]. All stages
of the CD nozzle have various parameters which dictate the behaviour of the flow
through them, such as length, curvature, and rate.

FIGURE 2.1: Parabolic nozzle geometry of the divergent section of
a nozzle, indicating the nozzle inlet (Ri), throat radius (Rt), and the

outlet or ’Nozzle exit’ is the exit radius (Re).

Previous work as early as 1944 by Kisenko[13] had determined the minimal effect
of the convergent section on the development and performance of a nozzle, leav-
ing the throat and divergent portion of CD nozzles as critical components which
determine the performance of a rocket engine. Thus, work pertaining to the opti-
misation of this component has been extensive. Rao developed a method for pro-
ducing a thrust optimised contour nozzle, which generally followed the profile of
a canted parabola[14, 15]. Rao’s work focused on the complete expansion of the
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exhaust gasses and parallel, uniform, flow at the nozzle exit for the respective ambi-
ent operating pressure and achieved this using a Method of Characteristics (MOC)
approach.

MOC was used to optimise the fluid flow through the nozzle. MOC is a method
for solving a given set of nonlinear equations numerically. First, characteristic lines
are found in the flow field which have properties that can be modelled using ana-
lytical techniques. The characteristics of fluid flow are coincident to the Mach lines.
They are used to find the compatibility relation and are key to the computational
method[16].

While MOC was used extensively for nozzle design[14, 15], which produced
mathematically optimal nozzle profiles, complex fluid dynamic effects and real per-
formance losses are difficult to truly predict and model. Further, only inviscid flow
was contemplated, which is an idealised state of fluid dynamics useful for math-
ematical formulations and models but unrepresentative of real world fluid flows.
This is where testing and experimental verification of nozzle design is required; to-
day this is primarily achieved using CFD simulations. Evans et al and Candler et al
contributed to developing CFD simulation processes to incorporate the full Navier
Stokes equation sets, introducing a framework which could solve viscous fluid flow
in the context of rocket nozzles[17, 18]. From this, Cai et al developed a methodology
to optimise nozzle contours using CFD and EA[19]. These optimisation processes
showed a 1.501% performance improvement in the contour nozzle performance,
which they attributed to a decrease in frictional and axial losses. These techniques
are still relevant, with nozzle configurations being proven using a combination of
CFD and EAs, more broadly as MDO[20, 21].

Different kinds of CD nozzles can be made and each have their own unique ad-
vantages which lend them to certain capabilities. The naming of CD nozzles typi-
cally refers to the contour and profile when looking at the cross section, often specif-
ically the divergent portion. While conical CD nozzles use exclusively straight lines
and are easy to construct, they are fixed and cannot compensate at changing alti-
tude. Dual-bell CD nozzles have unique atmospheric compensating abilities but are
typically bigger and heavier as a result. Parabolic nozzles, sometimes referred to
as bezier, hybrid, or Rao nozzles, are specialised nozzles that are more difficult to
design and construct but offer better performance than that of similar conical de-
signs[5].

2.2 Micro Nozzles

Micro-nozzles are defined as nozzles whose throat radii dimensions fall somewhat
in the micrometre (µm) to millimetre (mm) range. Compared to research on regular
(metre sized) nozzles, micro-nozzles suffer from viscous boundary layer effects[22,
23]. Viscous boundary layer effects are a key component which drives design of
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micro-nozzles and have been shown to deviate the optimal nozzle geometry of con-
ical nozzles from their metre scale counterparts[24]. Suenaga et al found that the
optimum nozzle divergence half angle is classically 15◦, but at the mm scale was
found to be in the range of 22◦to 29◦.

All nozzle profiles are subject to losses which reduce their theoretical output.
These can be summarised by: flow divergent losses, expansion ratio losses, bound-
ary layer and wall friction losses, two-phase flow losses, chemical losses, throat
erosion, and real gas properties. Many of these are fractional compared to the to-
tal power output from rocketry nozzles, but combined can make significant con-
tributions to the difference between a theoretical maximum and the actual perfor-
mance[5]. Further, on small scale propulsion systems like EP, these losses can be
more extreme; boundary layer losses are more pronounced at small scales[24].

Re =
ρ u L

µ
(2.1)

A measure of flow dynamics which is particularly relevant within the micro noz-
zle domain is the Reynolds number. First described by Stokes, this number describes
whether the flow is turbulent or laminar, and is a ratio of the inertial to viscous
forces. This relation is described by eq. (2.1), where L is the characteristic length.
Small Reynolds numbers (in the order of 102) may allow for the simplification of
eqs. (1.2) and (1.5), where fluid flow is generally described as laminar[25].

2.3 Motivations for this Research

There does not exist any work which aims to optimise a micro-nozzle with a
parabolic divergent contour. While much work has been done at the metre scale,
the increasing demand for small-scale satellite propulsion solutions necessitates an
optimised nozzle to maximise the thrust capabilities of the engines used to propel
them. An optimised nozzle contour will maximise thrust while minimising the mass
flow rate and plume divergence. The difference between an optimal nozzle contour
at the metre scale and the millimetre scale is of interest to this study, whereby the aim
is to understand the complex multi-modal physics in reduced nozzle dimensions.

This study will therefore produce a parabolic nozzle contour and subsequently
use it to find an optimum profile at the millimetre scale. This will be done through
use of a MDO framework and advanced EAs. The resultant geometries will then be
compared and the key geometric characteristics determined by the scale-dependent
physics for the nozzle examined.
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Chapter 3

Methodology

3.1 Analytical Geometry

Defining the geometry of the divergent portion of the CD nozzle (and more broadly
the convergent and throat portions) is an important step in the broader process of
optimisation. A useful feature of CD nozzle designs is their axisymmetric nature,
meaning that they can be defined around some central axis and revolved to create
a three-dimensional object. This simplifies the process in designing a nozzle, since
only a two-dimensional profile, or contour, can be defined and used to create the
whole. Nozzle contours are a popular way of expressing nozzle shapes and dynam-
ics; being two-dimensional, they are simple to construct and can be used by CFD
software for simulation purposes and Computer Aided Design (CAD) software for
fabrication purposes. With some reasonable constraints and needing to only define
a few constant parameters, a system can be devised which allows any number of
contours to be made which are related in their profile only. This is the principle be-
hind nozzle contour optimisation; by choosing a few defining geometric features of
the mathematical frameworks describing a nozzle contour, different geometries can
be produced and tested against one another and the optimum found.

3.1.1 Nozzle Geometry

In order to create a nozzle, a mathematical framework must be produced that de-
scribes the contour. The contour must be continuous and tangential and may be
defined radially or through a piecewise function. The software that will be used to
generate the mesh uses a nodal framework, in which points are defined by nodes and
lines drawn between them. Considering this piecewise-like approach, the method-
ology [15] proposed for the construction of a parabolic nozzle may be used. Perhaps
the most essential and mathematically dense sections, the parabolic region can be
described with reference to only a few key characteristics. Table 3.1 outlines the ge-
ometric control parameters for the entirety of the nozzle; the decision variables θN ,
θE, and ϵ are the key characteristics which define the parabolic profile, and describe
the nozzle throat angle, the nozzle exit angle, and the expansion ratio between the
nozzle throat and exit respectively.
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TABLE 3.1: Geometric control parameters for the nozzle contour def-
inition, their symbols, units, and variable type.

Geometric Definition Symbols Unit Variable Type

Nozzle throat radius Rt mm Decision
Expansion ratio ϵ - Decision

Parabolic angle N θN
◦ Decision

Parabolic control ratio δ - Decision
Converging circle radius ∅c, Rc mm Decision
Diverging circle radius ∅d, Rc mm Decision

Nozzle throat length lt mm Constant
Nozzle inlet radius Ri mm Constant

Nozzle convergence angle θc
◦ Constant

Using these definitions, the nozzle geometry may be constrained in useful ways
and extract the definitions needed. For example, by defining a throat radius, Rt, and
expansion ratio, ϵ (which is typically defined as ϵ = A

A∗ ), a solution can be found for
the exit radius, Re.

Re =
√

ϵRt (3.1)

Given eq. (3.1), the length of the nozzle can be defined. The perfect nozzle (100%
nozzle) is only 0.2% more efficient than a 85% nozzle, and given weight limitations
on spacecraft, many manufacturers choose an 80 to 85% nozzle instead, such that
the nozzle length is 80% the length of the conical equivalent, hence tan 15 represents
the optimum conical nozzle length [5, 12]. Thus:

LN = 0.8
√

ϵ − 1
tan 15◦

Rt (3.2)

FIGURE 3.1: Parabolic nozzle geometry of the divergent section of a
nozzle, where the nozzle inlet is described by (Ri), throat radius is
described by (Rt), and the outlet is described by the exit radius (Re).

Figure 3.1 illustrates the parabolic nozzle geometry. Points N, Q, and E are three
nodes which are used to define the bézier curve which describes the parabolic re-
gion of the contour. These point’s coordinates can be found analytically using the
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geometric definitions from Table 3.1, using eqs. (3.1) and (3.2), and a set of paramet-
ric Equations defining the radii smoothing function which joins the parabola to the
nozzle throat, as given by eq. (3.3). These defining parametric Equations are reliant
on the throat radius and the nozzle exit angle, θN .

x1(θN) = ∅cRt cos θN

y1(θN) = ∅cRt sin θN +∅cRt + Rt

}
− 90 ≤ θN ≤ (θN − 90)

(3.3a)

(3.3b)

These points are further reliant on the value of θE, which is not yet defined. θE is
essential in the definition of the parabolic region, describing the angle of depression
from the nozzle exit to the point Q. However, it is dynamically constrained by the
value of θN ; should θE be too big, it may cause the location of the point Q to fall past
point N, resulting in infeasible geometry. Thus a different control parameter may
be described for the geometry, δ. This unitless value describes the ratio between the
vertical placement of points N and E, on which point Q is placed upon the ray drawn
from point N at the angle θN . Figure 3.1 illustrates this relationship well. As such,
the point Q can be defined in our system robustly. The control points, (Nx, Ny),
(Qx, Qy), and (Ex, Ey) are defined as such:

Nx = x1(θN − 90)

Ny = y1(θN − 90)

Ex = LN

Ey = Re

Qx = δ
(Ey − Ny)

tan θN
+ Nx

Qy = δ(EY − Ny) + Ny

(3.4)

The bézier of the parabolic region of the contour is then typically defined using
eq. (3.5). However, the nodes are sufficient for the meshing software to produce its
own curve.

x2(t) = (1 − t)2Nx + 2(1 − t)tQx + t2Ex

y2(t) = (1 − t)2Ny + 2(1 − t)tQy + t2Ey

}
0 ≤ t ≤ 1

(3.5a)

(3.5b)

3.1.2 Mesh Generation

The mathematical framework described above was then translated into Python, a
general purpose programming language. Python has various packages which can
be installed that increase its functionality, many of which are relevant to this study.
As such, Python can be utilised to build an integrated system which may accomplish
many aspects of the project. One such package is GMSH, an open source meshing
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solution[26]. This package connects to a finite element meshing software; Python
can be used to calculate key vertex geometric information, and GMSH used to build
and construct the lines and mesh around it.

GMSH has the capability to refine the mesh along line elements. Natively re-
ferred to as bias, refinement of mesh cells is an important aspect of CFD simulation
as it allows for areas of interest or great fluid behaviour change to have more reso-
lution. The nozzle throat, walls, and exit interface are such areas of interest, owing
to the more complex physics in those regions. GMSH supports two types of refine-
ment, progression and bump; these refine the element towards one side, or both sides
respectively. The progression refinement follows a simple exponential increase in
cell length from start to finish, while the bump refinement is defined by an "ad hoc"
function. In order to properly utilise the bump progression when constructing the
parabolic mesh, this "ad hoc" function had to be reverse engineered and can be found
in appendix A.

By design, the mesh of the nozzle geometry can be constructed with arbitrary
values for the decision variables outlined in Table 3.1. However, the geometry must
be constrained with some constants at various aspects. These constants and their
values are outlined in Table 3.2.

TABLE 3.2: Geometric constant parameters.

Geometric Constant Value Unit

lt 0.51 mm
Ri 3.8 mm
θc 21.6 ◦

The inlet and throat parameters have been constrained, following research sug-
gesting that the nozzle inlet geometry has little influence on the development of the
flow from a nozzle[13]. The values chosen reflect previous work on nozzles of the
mm scale[24], but remain flexible enough that nozzles of any scale would not be
jeopardised.

The code that generates the mesh file can be found in appendix A.

Geometric Constraints

Part of designing the geometry is constraining the values which drive it. The de-
cision variables which will drive the optimisation of the nozzle geometry must be
constrained in order to ensure feasible geometries are always produced. While some
values are constrained to ensure the nozzle contour is always continuous, not self-
intersecting, and otherwise physically viable, others are constrained for their practi-
cality; ϵ is constrained to ensure the geometry does not grow excessively in order to
increase thrust which ensures that the nozzle does not get exceptionally large. ∅c,d

is constrained given the initialisation and positioning is contained within the nozzle
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throat definition, which is capped and outlined in Table 3.3. Table 3.3 outlines the
decision variables and their initial respective ranges. The ranges define the search
space for the geometric optimisation and have been chosen (if not for their inherit
geometric feasibility) for their broad appeal to make a multitude of feasible parabolic
nozzle geometries.

TABLE 3.3: Initial geometric constraint parameters and their upper
and lower limits used for the parametric study.

Geometric Definition Decision Variable Range Unit

Throat radius Rt 0.5 - 2.0 mm
Expansion ratio ϵ 50 - 200 -

Parabolic angle N θN 20 - 40 ◦

Parabolic control ratio δ 0.7 - 1.0 -
Throat smoothing radius ∅c 0.6 - 1.0 mm
Throat smoothing radius ∅d 0.6 - 1.0 mm

The parameters and their limits described by Table 3.4 have been chosen in order
to produce consistent simulations. Two methods of testing the sensitivity of geo-
metric parameters on the solution outcomes were utilised. Appendix B outlines the
methods and their results in greater detail. This analysis was critical in producing
consistent and realistic fluid flow and behaviour through the nozzle in the simu-
lations, as good simulated fluid behaviour is a strong indicator of high confidence
in the produced results. The first method combined a sensitivity analysis using a
set of cases generated using LHS (see section 3.2.2) and a random forest regression
model to predict geometric bounds which would guarantee consistent and realistic
fluid flow behaviour. The second method conducted a brief sensitivity analysis on a
stable geometric configuration (one that had proven to generate desirable fluid flow
behaviour), where all parameters were held constant and one varied such that safe
simulation bounds for the design space were found. It was found that θN and ϵ had
a strong correlation with the convergence and success of a simulation. In particular,
θN was found to not allow simulations to converge when too large; θN values above
25.5◦ impeded simulation convergence. Very small values of ∅c,d, around 0.1 mm
also impeded convergence. Further, the implicit value of θE (the angle of depres-
sion from the exit to the δ control node, see Figure 3.1) was also found to impede
convergence. Values below 6.5◦ resulted in failed convergence and were therefore
measured and cut from the study.
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TABLE 3.4: Finalised geometric constraint parameters and their up-
per and lower limits used for the parametric study.

Decision Variable Range Unit

Rt 0.5 - 1.2 mm
ϵ 60 - 120 -

θN 20 - 25.5 ◦

δ 0.7 - 0.95 -
∅c 0.85 - 1.0 mm
∅d 0.85 - 1.0 mm

3.2 Parametric Study

A parametric study can be conducted to analyse the effect of different design vari-
ables (or parameters) have on resultant properties. In the case of nozzle design, a
parametric study may analyse the effect of changing geometric parameters have on
the resultant thrust produced. In conducting a parametric study, different elements
can be inspected and thoroughly investigated prior to the optimisation. The para-
metric study may reveal a parameter which has no effect on the result; this would
thus allow for the complexity of the design optimisation to be reduced, ensuring that
the scope of the optimisation remains grounded and realistic, whilst also reducing
solve time. Thus, the sensitivity of the parameters to the result can be identified.

The parametric study for the parabolic nozzle geometry will be conducted by
varying the elements outlined in Table 3.4. Resultant geometries will be analysed
using ANSYS Fluent, a CFD software, with thrust, specific impulse, and divergence
of the exhaust plume investigated. Geometries which maximise the thrust, specific
impulse, and the efficiency of the plume divergence will be rated highly.

3.2.1 CFD Settings

In order to obtain these results, the nozzle geometries and meshes must be anal-
ysed. ANSYS Fluent is the CFD software which will be used, because: proven his-
tory in completing accurate simulations of nozzles of various scales, powerful fluid
flow models that integrate into the finite element analysis methods prescribed to cell
based mesh simulations, ability to simulate different fuels and ambient pressure pro-
files which match the operational use-case of the nozzle being designed, capability
to monitor relevant output data, and expansive automation library integrated into
the Python framework.

Flow Conditions

The CFD simulations will be conducted in a two-dimensional, axisymmetric plane
to reduce complexity. This can be achieved because the nozzle is an axisymmetric
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object, meaning that it can be described in three-dimensions by using only the pro-
file, with all flow fields being similar around the axis. Further, the simulation will
be conducted using a density based implicit simulation scheme. This means that
the simulation will be calculated using the density of the fluid moving through cells
to achieve convergence, as opposed to using the pressure at different cells. Density
based simulations are typically faster to calculate, owing to the reduced complexity
of density based particle physics compared to pressure based. The simulation will
also have energy Equations enabled, which ensures that heat convection and diffu-
sion are incorporated. Another assumption that can be made is that of its viscous
model; due to the supersonic nature of fluid flow through nozzles, laminar flow can
be enforced safely by definition. Thus, the cell Reynolds Number (described using
eq. (2.1)) is in the order of 101 to 102 within the nozzle domain.

The MET engine, which the nozzle will be optimised for, is flexible in choice of
fuels and may be easily adapted to use water vapour or Argon. Water vapour is
appealing for its abundance and ease of transport, but is chemically complex for
CFD simulations[27]. Therefore, in order to minimise this uncertainty, Argon gas, a
neutral, noble gas, may be used. The simulation assumes that the Argon acts as an
ideal gas, using the Sutherland viscosity model and a thermal conductivity kinetic
theory to approximate how it might behave.

Boundary Conditions

FIGURE 3.2: Parabolic nozzle geometry mesh with boundary names
established and fluid/vacuum regions described.

To conduct CFD, boundary conditions must be established. These represent the
environment that the simulation is placed in and how it connects to it. Boundary
conditions used in the simulation of a nozzle include: an axis, a wall, an inlet, and
an outlet. The axis has already been established as the point at which the simulation
is assumed to be mirrored around. The wall boundary condition represents a surface
on which the fluid may interact. The wall is assumed to be made of aluminium ma-
terial. The nozzle inlet is situated at the entrance to the nozzle, with the conditions
here describing the interior of the engine which the nozzle is connected to. The inlet
passes in the fluid to the simulation, the Argon fuel, at a temperature of 1000 K, and
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an initial gauge pressure of 50,000 Pa. The outlet is situated at the end of the nozzle,
where the domain is assumed to be the ambient outside environment conditions.
For this nozzle, the operating conditions will be in Low Earth Orbit (LEO) and so a
near vacuum state will be assumed. A gauge pressure value of 13 Pa has been set in
the vacuum region.

Convergence Conditions

Convergence of a CFD simulation is not an easily measurable quantity. Residual
values describe the average change of the governing CFD equations (see eq. (1.2))
between iterations and generally guide whether a solution is stable. While provid-
ing a good reference for simulation quality, more must be done to ensure a simula-
tion exhibits expected and real behaviour. An important quantity of interest for the
nozzle simulation is the flux of the mass flow through the inlet and outlet. This quan-
tity should be constant, given the constraints imposed by the governing equations
to ensure constant mass flow through all cells. Thus, by measuring the difference
between the inlet and outlet we can determine when a simulation is behaving in
a steady-state and may be deemed converged. An arbitrary value of 0.1 % may be
enforced to ensure the convergence of a simulation.

FIGURE 3.3: An example of flow splitting, a symptom of a poorly con-
verged simulation which is best identified via the pressure contour.

Further, it is important to inspect the flow fields when a simulation has con-
verged to ensure realistic and expected flow behaviour. CFD software may find
local minimums of the convergence conditions and governing Equations that do
not represent realistic flow, which may have been achieved following approxima-
tions and assumptions. By inspecting the pressure, Mach number, total velocity, and
temperature flow fields using contour plots, convergence can be confirmed or chal-
lenged. Flow splitting, illustrated in Figure 3.3, is a common symptom of a poorly
converged simulation and is unrealistic fluid behaviour. Whilst similar to what may
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be observed during a shock, flow splitting does not display characteristic pressure
profiles which have characteristic shape, or have corresponding Mach number flow
fields which indicate shock formation.

Pyfluent Implementation

Appendix A describes the Pyfluent code which performs the ANSYS Fluent simu-
lation. Pyfluent is a Python package which allows seamless Pythonic integration
into the ANSYS Fluent workspace. This package allows for a repeatable, scriptable
workflow surrounding similar CFD simulations. Despite similarities to the native
Fluent journal system, Pyfluent allows external data to be imported and changed,
allowing for many simulations to be ran in succession with desired changes (i.e.
changing the mesh to be imported, controlling desired parameters like inlet tem-
perature, pressure, determining the output file names) in one cohesive script. As
such, the simulation execution can be integrated into the existing mesh-generation
workflow.

3.2.2 Base Case Validation

Prior to completing the sensitivity analysis, a crucial step is ensuring that the con-
structed geometry and simulation conditions produce consistent simulations. This
can be done via a set of base case validations. By producing a limited set of geome-
tries and passing them into Fluent for a CFD simulation, a systematic performance
check can be produced which, should the entire set pass, should ensure a high suc-
cess rate of simulations when conducting the sensitivity analysis. This check is im-
portant in ensuring confidence in the new mesh geometry.

The base case validations may also be used to refine geometric constraints.
Should simulations consistently fail to converge despite satisfactory meshing
(proven by some geometries converging well) an analysis may be performed on
which elements are hindering convergence. It was found that a high value of θN

(values above 25.5◦) hindered convergence. This analysis may be performed using
the set of base cases, which may be constructed using geometric constraints chosen
which cover approximately the entire search domain. This may be done through the
use of LHS.

Latin Hypercube Sampling

Latin Hypercube Sampling LHS[28] is a random number generation system which
ensures each column exhibits values across its entire range of values. A LHS is a M×
N matrix, where N is the number of input parameters used to construct the geometry
of the nozzle (there are five decision variables, thus N = 5), and M is the number
of geometries to be constructed. LHS ensures the entire search space is covered, as
opposed to a generic random number generation which has no awareness of other
values being produced across other dimensions (columns). During the base case
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validation, an M value of five, then twenty, was chosen to validate the mesh and
simulation convergence. All geometric constraints (see Table 3.4) were represented
across their entire range of values within these five and twenty cases. To conduct
the sensitivity analysis, M = 400 was chosen to ensure appropriate coverage of all
geometric combinations and nuance.

3.2.3 Sensitivity Analysis

A sensitivity analysis is conducted to assess the capacity each geometric parameter
has on a measured outcome. The Sobol variance decomposition model [29] requires
the input parameters to be generated via LHS, which ensures every configuration
of values has even distribution. This variance based global sensitivity analysis cal-
culates first-order and total effect indices, Si and STi respectively. Si is a measure
of an inputs individual influence to the measured outcome and how the variance
of the measured outcome is tied to this, while STi measures the overall variance of
the measured outcome as evaluated by the parameter and its combined effect with
all other joint geometric values. This in essence is a measure of the weight a geo-
metric parameter has on the measured outcome and how it interacts with the other
geometric parameters.

The Sobol variance model and sensitivity analysis can be conducted using ge-
ometries and outputs generated by a surrogate model. These models will be trained
on the data produced by the geometries constructed and tested by the LHS of dimen-
sion M = 400. 90% of the produced cases will be used to train the surrogate model,
while the remaining 10% will be used to validate and test the model for its ability to
predict measured outcomes. The sensitivity analysis may be conducted across three
measured outcomes of interest: the thrust generated, the divergence efficiency, and
the specific impulse of the system. Each analysis must be run separately, and will
each have a unique makeup of parameters which influence the outcomes.

The sensitivity analysis may also be run on the raw data produced from the LHS
geometries. This data, being unstructured, may not be tested via Sobol’s method,
and must instead be investigated via a local sensitivity function and reduced global
analysis. This analysis using the Delta sensitivity method can be conducted using
Python’s SALib package, which requires a matrix with the input geometric parame-
ters and an evaluation of each quantity being measured. This may be compared to
the Sobol variance sensitivity analysis, which will be conducted within a MATLAB
program provided by Kyushu University and the STSEL laboratory.

Performance Measurement Technique

Laval nozzles are well understood systems in the classical sense, and thus have
many convenient Equations which may be used to characterise quantities of interest,
like thrust, mass flow rate, or exit velocity. Thrust is described by eq. (3.6), where ṁ
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is the mass flow rate, Ve is the exit velocity, pe,o is the exhaust and ambient pressure
respectively, and Ae is the exit area.

F = ṁ Ve + (pe − po)Ae (3.6)

The mass flow rate may be described separately, using eq. (3.7). A∗ represents
the area of the throat, pt is the total pressure, Tt is the total temperature, γ is the
specific heat ratio of the exhaust, and R is the gas constant.

ṁ =
A∗ pt√

Tt

√
γ

R

(
γ + 1

2

)− γ+1
2(γ+1)

(3.7)

Finally, the exit velocity of the exhaust can be described using eq. (3.8). Me is the
exit Mach number and Te is the exit temperature.

Ve = Me
√

γ R Te (3.8)

These three Equations are generally useful for describing exhaust flow through a
Laval nozzle and may be used to analyse, verify, and explain results obtained from
fluid simulations of exhaust fluid flow.

While ANSYS Fluent is capable of providing estimates of some physical values,
such as the mass flow rate at the inlet and interface, more advanced quantities must
be calculated post process. ANSYS Fluent can provide cell-based values for quan-
tities such as pressure, density, axial and radial velocity, and temperature. While
individually these values hold little value, the integration of them across the bound-
ary of interest results in the effective value of interest. Thus, thrust, axial efficiency,
and the specific impulse may be derived from eqs. (3.6) to (3.8) and then calculated,
alongside a more accurate value for the mass flow rate of a system, using eq. (3.9):

ṁ = 2π
∫ re

0
ρ(v · n⃗) dA

T = 2π
∫ re

0
(ρu2 + p)r dr

Taxial = 2π
∫ re

0
(ρu2

axial + p)r dr

ηD =
Taxial

T

Isp =
T
ṁ

(3.9)

where n⃗ is the normal of the plane through which the fluid is passing, p is the static
pressure, u is the fluid velocity, and r is the radius at which the point is calculated. In
general, it is useful to solve these integrals across the discrete data produced by the
cell based simulation method via an application of Simpson’s integration, defined
by eq. (3.10):
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∫ b

a
f (x) dx ≈ b − a

6

[
f (a) + 4 f (

a + b
2

) + f (b)
]

(3.10)

where a and b represent cells, with f (x) being the value of the quantity in question
at each of those cells.

3.3 MDO

The primary MDO process will be completed on existing architecture provided by
Kyushu University, which is built in MATLAB. This system is built following the
principles of the NSGA-II algorithm, which is a SAEA. These surrogate models are
trained and built on a library of existing simulation data, which in this study will be
the library produced within the sensitivity analysis. From this, predictive values for
values of interest may be produced based on any configuration of geometric input
parameters. The architecture built by Kyushu University trains multiple models,
among which the model with the highest accuracy when measured against existing
input parameters and predictive outputs is adopted. Through this, further simu-
lation of systems during the optimisation process is substituted for the surrogate
model prediction, cutting computation time and cost.

3.3.1 Objective Functions

MDO relies on objective functions. These are characteristic of a system, such as the
thrust produced by a nozzle, and are often desirable to maximise or minimise. In
practice, these can all be solved as a minimisation problem, by use of a negative
value on a maximising function. Thus, standard mathematical procedures can be
applied for solving minimisation problems. Single objective problems have only one
such function in question, and are generally trivial to solve using basic Newtonian-
like methods[10]. Multi-objective functions are more difficult to solve, since they
rarely follow functions which can be solved analytically using calculus based meth-
ods. These are instead solved using an EA, direct search approach. The objective
functions used in this study are summarised as follows:

Maximise: (1) Thrust, T

(2) Divergence Efficiency, ηD

(3) Specific Impulse, Isp

These are all directly related to desirable performance characteristics of the noz-
zle. Objective function (1) and (3) are conflicting parameters, indicating a Pareto
front will develop, describing many different nozzle geometries which have a trade-
off relationship between the specific impulse of the system and the thrust produced.
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Confidence in the produced results will be ensured from the simulation and the
MDO process using objective function constraints, such that if any cases display un-
realistic (i.e. not physically possible) behaviour, they are discarded.

Subject to: (1) Specific Impulse, Isp ≤ Isp,theory

(2) Divergence Efficiency, ηD ≤ 1

The Isp of a simulated system must not exceed the theoretic maximum, just as
the system may not be more than 100 % efficient. The theoretic maximum Isp of a
system may be derived using eqs. (3.6), (3.7) and (3.9), and described using eq. (3.11),
where the inlet and ambient pressure, inlet temperature, flow coefficient, and nozzle
geometric information is known.

ṁideal =
p0 A∗σ√

R T0

Fideal = ṁideal Ve + pe Ae

Isp ideal =
Fideal

ṁideal

(3.11)
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Chapter 4

Parametric Study

A sensitivity analysis of the parabolic micro-nozzle has been conducted, as has a
parametric analysis which varies throat radius, smoothing radius, expansion ratio,
curve factor and divergent angle to maximise thrust, exhaust divergence efficiency,
and specific impulse.

4.1 Sensitivity Analysis of the Parabolic Micro-Nozzle

Since the data was not produced via a LHS technique, a Sobol analysis was not possi-
ble. Instead, a Delta analysis was conducted; this analysis held very little confidence,
so the results were discarded. The random forest method was still applicable and
was generated using the sci-kit learn Python package. The random forest algorithm
is at its core a best-split decision-tree classifier, which may be used to estimate and
predict outcomes based on model data. The core principles are those of regression
analysis.

4.1.1 Static Study (50 Case)

The "case" or "instance" is a single set of values for all variables, where each value
is randomly chosen from its respective interval without repetition in any given di-
mension.

This analysis was conducted by first identifying a case which produced desirable
results, where the produced pressure contours were without discrepancies and illus-
trated realistic fluid flow, simulation residuals were below desired targets, and con-
vergence criteria were met. Then, all parameters were held constant while one was
varied between a maximum and minimum bound. Appendix B details the input
geometric parameters, alongside the output parameter values as calculated using
eqs. (3.9) and (3.10).

Figure 4.1 illustrates the relationships revealed via the random forest. The ran-
dom forest analysis yielded consistent results which suggested high dependence on
Rt on all output parameters, but most significantly on thrust and specific impulse.
It was found that the model could make very accurate predictions of all output pa-
rameters given a change in the rc, ϵ and δ values.
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FIGURE 4.1: Random forest prediction of most important parameters
for solution outcome.

θN was found to reduce the reliability of the models to predict the divergent ef-
ficiency and specific impulse values. As such, the values with high permutation
importance as described by Figure 4.1 indicate a strong correlation between the rel-
evant input parameter with the output parameter. These parameters may be de-
scribed as complex parameters, which may yield strong global sensitivities which
cannot be identified via a local analysis. This is further justified via the Pearson
bearing analysis.

FIGURE 4.2: Pearson analysis on the input parameters bearings on
the output parameters.
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Figure 4.2 illustrates the results of the Pearson bearing analysis. Positive values
indicate that as the input parameter in question increases, so does the output param-
eter, while negative coefficients indicate an inverse relationship. It should be noted
that the values with strongest correlations are closely tied to those predicted by the
random forest method. As expected, δ and θN values had the greatest effect on the
divergence efficiency of the nozzle, while Rt had an inverse relationship. The anal-
ysis suggests that the throat region is the most important for developing the thrust
of a nozzle. However, the specific impulse is a better indicator of the ability of a
nozzle to convert the mass-flow into thrust, and is best developed by the θN , δ, and
Rt values.

4.1.2 LHS Study (500 Case)

494 cases were generated using a LHS of dimension M = 494. This number was
chosen such that an estimated 10% of cases could be cut due to θE values being too
small (which yielded poor convergence within CFD simulations). Another 10% of
cases may be non-converging during the batch simulation process, leaving ∼ 400
cases with adequate convergence and reliable results/data. In total, 432 cases were
used for the sensitivity analysis and further for the parametric analysis and surro-
gate based MDO.

FIGURE 4.3: Delta sensitivity analysis first order indices conducted
on the input parameters with respect to the output parameters.

Figure 4.3 shows the first order indices for the thrust, divergence efficiency, and
specific impulse of the nozzles broken down into the individual proportional effect
of each geometric parameter. Table 4.1 further breaks down these indices, including
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the models confidence value associated with each index. This confidence value is
proportional to the index it is associated with; if the confidence value is too large
with respect to the index, the confidence is, therefore, low. It is evident that the
confidence is almost universally low, except in the case of the effect of Rt on the
thrust and specific impulse of a system, and θN on the divergence efficiency and
specific impulse.

TABLE 4.1: Delta sensitivity analysis first order indices for each pa-
rameter, with respective confidence bounds.

Output Parameter Si Confidence

Thrust Rt 0.709286 0.008319
∅c 0.069979 0.025085
ϵ 0.070659 0.022645
δ 0.076502 0.020176

θN 0.057644 0.021182

Divergence efficiency Rt 0.077200 0.020989
∅c 0.087264 0.023706
ϵ 0.101654 0.032558
δ 0.078644 0.019131

θN 0.535009 0.024437

Isp Rt 0.501112 0.026917
∅c 0.091105 0.024481
ϵ 0.136545 0.027120
δ 0.082273 0.023260

θN 0.149531 0.026649

While the confidence was low, the results were consistent when analysed mul-
tiple times. To understand why it was self-consistent, a Pearson analysis was also
conducted to observe the local correlation. The Pearson analysis may be used to un-
derstand how a variable affects the outcome locally and whether it can be used as
an indicator of what the outcome may be.

Figure 4.4 illustrates the Pearson correlation coefficients. These coefficients show
remarkable similarity to those evaluated in Figure 4.2. Whilst assuring the validity
of the static studies results, this simultaneously illustrates why the delta first-order
indices were consistent; high local correlation ensures that despite low confidence,
results of the analysis remain largely consistent at least in terms of their respective
proportion to each other. Figure 4.4 is different from Figure 4.2 in only two signifi-
cant ways: ϵ has a much higher effect on the divergence efficiency of a system than
previously indicated, while δ has a much smaller effect.
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FIGURE 4.4: Pearson analysis on the input parameters bearings on
the output parameters.

4.1.3 Sensitivity Analysis using the Surrogate Model

A surrogate model was trained on each output parameter, using 90% of the training
data, whilst the remaining 10% was used as validation of the models. 5 different sur-
rogate models were trained for each output parameter, but only the best performing
was used. The model that had the best performance for thrust was found to be the
orthogonal response surface methodology[30], divergence efficiency was the multi-
layer perception method[31], and specific impulse was found to be the orthogonal
response surface methodology. These had errors of 0.0005%, 0.0450%, and 0.0203%
respectively on the validation data.
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FIGURE 4.5: Sensitivity indices of the thrust with respect to the input
parameters using the surrogate model.

The surrogate models could then be used to produce a set of data that conforms
to the required Sobol analysis structure. Figure 4.5 illustrates the Sobol sensitivity
indices for each geometric input parameter on the thrust generated. These indices
are normalised against each other to illustrate and compare their proportional effect.
The thrust is completely dominated by the Rt parameter, both locally and globally.
It is generally expected that the expansion ratio would have a large influence on the
thrust, but this is not the case.

F ∝ π R2
t (1 + ϵ) (4.1)

This discrepancy was unexpected, and investigated further. From eq. (3.7), a
direct correlation to the throat area, A∗, is found, which is itself exponentially pro-
portional to the throat radius. Whilst eq. (3.6) illustrates that the thrust is both pro-
portional to the mass flow rate and the exit area (which is tied to ϵ), the effect of Rt

is stronger. Using eqs. (3.6) and (3.7), eq. (4.1) may be derived, which illustrates the
proportional effect both the throat radius and the expansion ratio have on the thrust
of a system. As such, the throat radius was disproportionally represented in the
sensitivity analysis. The other geometric parameters were completely dominated
and thus insufficient analysis could be performed on their sensitivity indices as they
were all equally small.
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FIGURE 4.6: Sensitivity indices of the divergence efficiency with re-
spect to the input parameters using the surrogate model.

The divergence efficiency was more interesting to examine, as Figure 4.6 illus-
trates how the geometric parameters combine to influence the divergence efficiency
result. As expected the value of θN , the initial divergent angle, had a large bearing
on the divergent efficiency of the nozzle. The curve factor, δ, also influences the noz-
zles divergent efficiency capacity, although only locally. The STi index had very little
representation of the δ factor, indicating that the combined effect was insignificant
when compared to the combined global effects of the other geometric parameters.

The δ factor was expected to influence the divergence efficiency, since it plays
a role in the shaping of the divergent portion and directly relates to the near-wall
effects. The indication of the limited effect δ has that Figure 4.6 highlights is indica-
tive of the changed fluid dynamics at the millimetre scale. Viscous wall-effects and
the boundary layer produced at this scale is significant and is the leading cause of
this discrepancy. Further, the δ value was severely limited due to simulation con-
vergence issues. Alongside a limited θN value, the range of nozzle shapes that were
applicable and available for analysis in this study was reduced and may provide
further insight into the small effect the δ value had on the divergence efficiency.

Locally, ϵ had very little influence on the divergent efficiency of the system, but
had a large effect on the global index. This is perhaps indicative of the construction
of the nozzle, through which larger values of ϵ resulted in longer nozzles. This
suggests that the nozzle length had a greater impact on the divergent efficiency, and
thus the flow needed time to develop within the nozzle to feel the impacts of the
nozzles geometric design on divergent efficiency.
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FIGURE 4.7: Sensitivity indices of the specific impulse with respect to
the input parameters using the surrogate model.

Figure 4.7 illustrates the specific impulse Sobol indices for each geometric param-
eter. The specific impulse is also dominated by the throat radius, Rt. However, the
other geometric parameters also play a fair part in developing the specific impulse
of the system, both locally and globally. The value of θN has a greater influence lo-
cally, while a much smaller effect globally when combined with all other geometric
parameters. Inversely, δ and the smoothing radius (rc) had a greater effect globally
than locally. This indicates that the specific impulse is sensitive to the shape and
flow of the nozzle, rather than the scale or broad shape of it, as shown by the greater
effect of the smoothing radius and δ indices over the θN and ϵ indices.

4.2 Parametric Analysis of the Parabolic Micro-Nozzle

The parabolic nozzle geometry was analysed using three distinct methods, each of-
fering unique insights into the subtle variations of nozzle output from small changes
to nozzle geometry. Figure 4.2 illustrates the results from a targeted local analysis,
while Figure 4.3 illustrates to what proportion each input parameter has on the out-
puts locally. Figures 4.5, 4.6, and 4.7 offer insight into the local and global effect,
and may be used as validation of the surrogate models when comparing the local
sensitivity to Figures 4.2 and 4.4.

It was found that ϵ had more influence when the dataset was expanded from the
static to the LHS study with respect to the divergent efficiency, which suggests that
the value of ϵ may have varying effect on different geometries and thus must have
a unique global effect. Figure 4.6 confirms this theory, where the local influence
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is small, but the global more dominant. The inverse is true of δ, where its local
influence is greater than its global influence.

The throat radius, Rt

It was found that by varying the throat radius, Rt, the thrust was greatly increased.
This is tied to the construction of the geometry; the exit radius was tied directly to
both the expansion ratio, ϵ, and the throat radius, Rt. In doing so, the thrust was
dominated by the throat radius parameter. Further, the throat radius proportionally
increased the mass flow rate. Thus, the radius of the throat had a direct and ex-
ponential correlation to the nozzle thrust generated, as shown using eqs. (3.6), (3.7)
and (4.1).

The smoothing radius, rc

Almost universally, all sensitivity analyses found that the throat smoothing radius,
rc had very little effect on any measured output. Table 4.1 illustrates that while the
delta analysis showed a non-insignificant effect on thrust, the confidence was low.
The throat smoothing radius does have some effect on the divergence efficiency and
specific impulse of a system when investigated globally, as shown in Figures 4.6 and
4.7, but is generally overshadowed by other geometric parameters. While the throat
region does play a significant role in the generation and development of exhaust
through a nozzle, the smoothing between the throat region and the parabolic region
is not significant at the relative scales tested in this study.

The expansion ratio, ϵ

The expansion ratio’s biggest contribution to the nozzle outputs was in the diver-
gent efficiency, where it can be concluded that the global effect of the expansion
ratio - preserving nozzle shape while extending nozzle length and exit area - helped
mature the exhaust flow and yield more direct exhaust flow. Although there was
a local inverse effect on the specific impulse, as illustrated by Figures 4.2 and 4.4,
the surrogate analysis found the overall impact to be diminishing in comparison to
the other geometric values. Previous research on nozzle dynamics, both at the me-
tre and millimetre scale[24], highlight a distinct relationship between the expansion
ratio and thrust, which is broadly absent. This can be attributed to the overwhelm-
ing influence of the throat radius on the thrust output of nozzle geometries tested.
Alongside the low confidence reported by Table 4.1, Figure 4.2 suggests a negative
correlation, further establishing the grounds for dismissing the marginal results of
the small-population studies.
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The curve factor, δ

As shown in Figure 4.7, the δ value had its most significant contribution to the output
parameters in the global effect on specific impulse, indicative of a sensitivity to the
shape of the nozzle on the ability to convert exhaust flow to thrust. This highlights
how even at the millimetre scale, even small changes to the broad shape of a nozzle
may change the flow dynamics. This underlines how the boundary layer effects may
be influenced by minimal changes in nozzle shape and are not an overpowering
force at this scale, merely a consideration that may be leveraged in favour of specific
nozzle performance characteristics.

The initial divergent angle, θN

The divergence efficiency was highly correlated to the value of θN , both locally and
globally as shown in Figure 4.6. When analysing the global effect, rc, ϵ, and θN are
all contributing factors which influence both the nozzle shape, as well as the ini-
tial expansion region immediately exiting the throat of the nozzle. This highlights
how the divergence efficiency is strongly influenced by the initial stages of exhaust
expansion in the nozzle at the millimetre scale. This finding is consistent with pre-
vious work[24, 27] and suggests a relationship that transcends the nozzle shape (i.e.
conical, parabolic etc.).

The sensitivity analysis indicates that in order to better understand the behaviour
and influence of the geometric parameters which shape the divergent parabolic re-
gion of the nozzle, more constraints need to be applied. The throat radius should
remain fixed, to ensure consistent exhaust inlet behaviour; to understand the com-
plex behaviour surrounding the mass flow rate at the millimetre scale, the throat
radius should remain constant to instead focus on the divergent region while mass
flow rate is kept constant. Further, the smoothing radius is largely underrepresented
in its global and local effect on measured exhaust outputs; and thus could be kept
constant to further reduce research complexity with little consequence provided a
suitable optimal value is agreed upon.
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Multi-Objective Design
Optimisation

After completing the parametric study, the surrogate models can be used for the
MDO of the nozzle geometry. The raw input data (i.e. the 432 cases simulated)
achieved ranges of the objective functions as shown in Table 5.1; while some nozzles
achieved very high values for one or two of the objective functions, the MDO will
maximise all objectives simultaneously.

TABLE 5.1: Ranges of the objective functions from the simulated, LHS
dataset (before MDO).

Output Minimum Value Maximum Value Unit

Thrust 0.059 0.360 N
Divergence Efficiency 99.14 99.74 %

Specific Impulse 106.2 110.0 s

A brief investigation into a SAEA MDO process was conducted using Python
and is presented in Appendix C. However, due to time constraints, the EA model
and MDO process could not be refined to produce results of sufficient calibre. As
such, they are excluded from the main body of work.

5.1 MDO Results

The MDO process requires all objective functions to be minimisation evaluations,
where the objectives being optimised in this study are maximisation functions. The
conversion is simple, where the functions are given a negative value when evaluated
and are thus converted from a maximisation to a minimisation. When interpreting
the raw results from the MDO process of the nozzle geometry, it is useful to remem-
ber that due to the minimisation conversion, axes may be inverted.

The MDO was run using a MATLAB library composed by Kyushu University.
The SAEA was initialised using a standard setting which has been used in previous
micro-nozzle optimisation work[24, 27]. The EA operation probabilities were as fol-
lows: the crossover probability of individuals across generations was set to 100%,
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while the mutation probability of individuals was set to 10%. 200 individuals were
used and evaluated over 200 generations, with 40,000 total evaluations completed
via surrogate models.

FIGURE 5.1: MDO parallel coordinate plot for non-dominated solu-
tions, linking the objective functions to the input parameters which

produce them.

Noticeably, most input parameters exhibit a wide range of values; having a range
of values provides confidence that the surrogate model, alongside the design and
definition of the nozzle, provides enough complexity and range of nozzle designs
which may produce sufficiently different nozzle characteristics. In optimising the
objective functions, some trends have arisen in the input geometric parameters.

Rt tends towards larger values, through which the sensitivity analysis illustrated
plays an important role in increasing thrust and specific impulse. The range illus-
trated can be justified by the divergence efficiency competing with the increase in
thrust and specific impulse, as Figure 4.4 illustrates. Rc exhibits a range of values
which either completely maximise or minimise its value, suggesting that the bounds
for Rc may be expanded to further extract performance in the specific impulse or di-
vergence efficiency outputs (given these are both mildly affected by the value of Rc

as found in Figures 4.7 and 4.6 during the sensitivity analysis). ϵ exhibits a wide
range of values covering the entire spectrum of values, illustrating very good di-
versity among the Pareto optimal designs. However, the majority of them sit at the
maximum value of the available range, which indicates that the range could be ex-
panded further to extract greater performance metrics from a larger value of ϵ. The δ

value is perhaps that most universally similar value, where many nozzles maximise
the value to improve the divergence efficiency. Some designs have minimised the
value, producing a more conical design, but these are few when compared to the
amount of more traditionally parabolic designs produced via the MDO. Finally, θN

exhibits a range of values, with many maximising the angle to further maximise the
divergence efficiency.
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FIGURE 5.2: The final MDO generation plotted against the objective
functions. Cyan dots represent non-dominated solutions while green

dots represent feasible, albeit dominated, solutions.

The objective functions as displayed in Figure 5.2 suffer from the axes inversion
as mentioned previously. The final generation of the MDO process using surro-
gate models is illustrated in Figure 5.2. The non-dominated solutions are coloured
in cyan; non-dominated solutions satisfy the vector condition fi(x⃗) < fi(x⃗ ′) i ⊂
(1, 2, 3), where (1, 2, 3) indicate one of the objective functions.

FIGURE 5.3: Final generation of the MDO, plotted against thrust and
specific impulse.
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A clear dependence between the thrust and specific impulse of the system can
be identified in Figure 5.3. The is a direct correlation, where an increase in thrust
also increases the specific impulse of the system. The upper right region is indica-
tive of some restriction on thrust, where the specific impulse may be varied without
impacting thrust.

FIGURE 5.4: Final generation of the MDO, plotted against specific
impulse and divergent efficiency.

A trade-off relationship between the specific impulse and the divergence effi-
ciency can be seen in Figure 5.4, where an increase in specific impulse results in a
decrease in the divergence efficiency of the system.

FIGURE 5.5: Final generation of the MDO, plotted against divergent
efficiency and thrust.
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Finally, the general relationship between the divergence efficiency and the thrust
of a system is unstructured, but a Pareto front has developed at high divergent ef-
ficiencies. Above 99.68%, a strong trade-off relationship develops where a small in-
crease in the divergence efficiency dramatically reduces the thrust of a system. Thus,
geometries which produce divergent efficiencies above 99.68% may generally be ex-
cluded from consideration when choosing a nozzle geometry for a system, given
the large reduction in thrust for a small increase in efficiency. Compared to conical
micro nozzles[24, 27], the divergence efficiency of the optimised parabolic nozzle
geometry is much improved across the board.

5.2 Verification of Results

In order to examine the Pareto front generated by the MDO process, a small selection
of cases may be extracted and examined further. These validation cases were used to
ensure that the MDO and surrogate models have yielded high quality results that are
representative of the nozzle geometry and performance characteristics. Three cases
were examined, one for each performance metric, where the highest performing case
was chosen. Thus, a high thrust case, a high divergence efficiency case, and a high
specific impulse case have been chosen for validation.

5.2.1 High Thrust Case

TABLE 5.2: High thrust geometric parameters derived through MDO

Decision Variable Value Unit

Rt 1.200 mm
ϵ 120.0 -

θN 20.00 ◦

δ 0.705 -
∅c 1.000 mm

The highest thrust developed during the MDO was 0.362 N, which is a 5.6 % increase
over the unprocessed data as shown in Table 5.1. Table 5.2 outlines the geometric
inputs which produced this nozzle. Rt, ϵ, and ∅c have all been maximised, while
θN and δ have been minimised. Notably, δ has not been pushed to its absolute limit,
which suggests that the produced value is at some local minimum; this is in contrast
to the other parameters, where the values at the bounds suggest minimums outside
the bounded ranges. Increasing or decreasing these values may allow for further
performance increase.
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FIGURE 5.6: CFD pressure contour of the high thrust case.

FIGURE 5.7: CFD Mach number contour of the high thrust case.

FIGURE 5.8: CFD velocity contour of the high thrust case.
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TABLE 5.3: High thrust output parameters derived through MDO

Output Estimated Value Simulated Value Unit Difference (%)

Thrust 0.362 0.362 N -0.102
Divergence Efficiency 99.32 99.32 % 5.9e-4

Specific Impulse 109.6 109.7 s 0.048

The high thrust nozzle is very conical in profile, but has the characteristic higher
divergence efficiency provided by the minimal parabolic profile. While the diver-
gence efficiency is low with respect to the parabolic nozzles developed in the MDO,
they exceed those produced using conical designs. Conical nozzles fail to deliver
high divergence efficiency when also producing high thrust; the divergence effi-
ciency fails to achieve more than 97 % when producing high thrust[27].

The difference between the MDO estimated values and the CFD simulated val-
ues shows very good agreement, as shown in Table 5.3. This can be attributed to the
high confidence in surrogate models. Further, the flow fields produced by the CFD
are of excellent quality, as illustrated in Figures 5.6, 5.7, and 5.8. All flow fields are
continuous and do not display any flow splitting.

FIGURE 5.9: CFD temperature contour of the high thrust case.

The Mach number and the velocity contours are typically closely correlated,
given the direct relation between the two values. However, Figures 5.7 and 5.8 have
discrepancies which may only be explained when examining the temperature within
the nozzle. Figure 5.9 illustrates the static temperature within the high thrust case
nozzle, but may be representative of all cases. The high temperature at the nozzle
wall is resultant from the large boundary layer effect at the micro scale, and the wall
friction. This change in temperature changes the speed of sound and thus the lo-
cal Mach number. Therefore, the boundary layer is both confirmed and its effect on
exhaust flow quantified.
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5.2.2 High Divergence Efficiency Case

TABLE 5.4: High divergence efficiency geometric parameters derived
through MDO

Decision Variable Value Unit

Rt 0.862 mm
ϵ 120.0 -

θN 25.50 ◦

δ 0.950 -
∅c 1.000 mm

The highest divergence efficiency developed during the MDO was 99.70 %, which
is a 0.04 % decrease over the unprocessed data as shown in Table 5.1. Figures 5.4
and 5.5 suggest that the divergence efficiency is generally a conflicting parameter
to both thrust and specific impulse. Thus, it can be seen that the MDO has found a
maximum for the divergence efficiency while maintaining the conflicting thrust and
specific impulse values.

Table 5.2 outlines the geometric inputs which produced this nozzle. The highest
divergence efficiency produced via the MDO has maximum values for ϵ, θN , δ, and
∅c, while had a mid-range value for Rt. This suggests that the value found for Rt

is a local minimum, where the other parameters may benefit from further extended
bounds.

FIGURE 5.10: CFD pressure contour of the high divergence efficiency
case.
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FIGURE 5.11: CFD Mach number contour of the high divergence effi-
ciency case.

FIGURE 5.12: CFD velocity contour of the high divergence efficiency
case.

TABLE 5.5: High divergence efficiency output parameters derived
through MDO

Output Estimated Value Simulated Value Unit Difference (%)

Thrust 0.182 0.181 N -0.923
Divergence Efficiency 99.70 99.68 % -0.022

Specific Impulse 107.9 108.8 s 0.836

The high divergence efficiency nozzle has a much more pronounced curve when
compared to the high thrust case; this assists in directing flow out of the nozzle
in the axial direction. This example highlights how the parabolic shape improves
performance at the millimetre scale, similar to the usual metre scale, despite the
increased boundary layer effects.
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Some minor flow splitting can be identified in the downstream region of Figure
5.10 along the axis. This does bring some level of uncertainty in the results and is
evident in the larger differences between the estimated values and simulated values
as shown in Table 5.5 when compared to the high thrust case (see Table 5.5).

5.2.3 High Specific Impulse Case

TABLE 5.6: High specific impulse geometric parameters derived
through MDO

Decision Variable Value Unit

Rt 1.200 mm
ϵ 60.00 -

θN 20.01 ◦

δ 0.950 -
∅c 0.851 mm

The highest specific impulse developed during the MDO was 110.2 s, which is a
0.18 % increase over the unprocessed data as shown in Table 5.1. Table 5.6 outlines
the geometric inputs which produced this nozzle. The geometric values of Rt and δ

have been maximised, while ϵ has been minimised. The value of θN was very close
to its lower bound, but may have found a minimum just above this bound. It is
also possible that this near-boundary value is a characteristic trait of the EA process,
where it has been mutated in the final generation. Interestingly, ∅c found a local
minimum at 0.851 mm, where the high thrust and specific impulse nozzles both had
this value maximised.

FIGURE 5.13: CFD pressure contour of the high specific impulse case.
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FIGURE 5.14: CFD Mach number contour of the high specific impulse
case.

FIGURE 5.15: CFD velocity contour of the high specific impulse case.

TABLE 5.7: High specific impulse output parameters derived through
MDO

Output Estimated Value Simulated Value Unit Difference (%)

Thrust 0.359 0.359 N -0.121
Divergence Efficiency 99.11 99.08 % -0.026

Specific Impulse 110.2 110.3 s 0.126

The high specific impulse nozzle had more distinct curvature than the high thrust
case, due to the increased δ value. The nozzle achieved both very high specific im-
pulse value and thrust value, while displaying the worst divergence efficiency of
the three verification cases. Similarly to the high thrust nozzle, the parabolic nature
of the nozzle retains the overall high divergence efficiency when compare to that of
purely conical nozzles.
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The difference between the estimated MDO values and simulated CFD val-
ues was insignificant, as shown in Table 5.7, with the estimation being under-
representative of the actual simulated value. This can be attributed to the high confi-
dence in surrogate models. The flow fields, as shown in Figures 5.13, 5.14, and 5.15,
are of excellent quality as they are all continuous and no flow splitting is present.

The MDO process, using EA, successfully maximised the performance charac-
teristics of the nozzles, where local minimums were found for various geometric
attributes which defined some of the highest performing nozzles. Each high per-
forming nozzle found one geometric parameter that helped achieved the unique
attributes of that design, namely δ, Rt, and ∅c, for the highest thrust, divergence
efficiency, and specific impulse respectively. Interestingly, the derived values of ∅c

are also higher than Rao’s formula suggested value, where ∅c = 0.382 Rt.
Overall, all three cases showed very good correlation with the estimations pro-

duced via the surrogate models and the MDO process. This gives high confidence in
the set of solutions contained along the Pareto front, from which any configuration
may be chosen to provide the desired performance characteristics. The slight flow
splitting observed in the high divergence efficiency case (see Figure 5.10) is problem-
atic, but may be resolved with further simulation work. Whilst both the high thrust
and divergence efficiency cases both saw losses from their estimated performance
metric, the specific impulse saw an increase; this can be attributed to the best sim-
ulation convergence, where the specific impulse case saw the lowest mass flow rate
difference between the inlet and interface of 4 × 10−4 %.
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Conclusion

This study produced a parabolic nozzle contour and found a set of Pareto-optimum
profiles at the millimetre scale. The resultant geometries were compared and the key
geometric characteristics determined by the scale-dependent physics for the nozzle
examined. Investigations into the nozzle geometry prior to the parametric study
and MDO process revealed parametric dependence on CFD simulation convergence.
Specifically, values of θN over 25.5◦ impeded simulation convergence, where flow
splitting occurred. Further sensitivity analysis was performed to characterise geo-
metric parameters with performance outputs.

The nozzle geometry had characteristic geometric parameters which drove each
of the output performance metrics. The throat radius, Rt, had an effective 100 %
correlation to the thrust produced, as a consequence of the exponential correlation
derived. Similar to the conical nozzle, the initial divergent angle, θN , had the largest
share of the global correlation to the divergence efficiency of the nozzle at 88.1 %. The
δ factor, which controls the curve of the parabolic region, was shown to correlate to
the divergence efficiency only locally, while having more of an effect on the specific
impulse of the nozzle. This behaviour may be indicative of a relationship to the
boundary layer effects.

The surrogate models performed very well, where they allowed for in depth
analysis of parameter sensitivities and computationally inexpensive EA processes
using SAEA. Verification of resultant geometries was performed, where the biggest
difference between surrogate estimation and simulation output in resultant perfor-
mance was 0.923 %. Through the MDO process, both thrust and specific impulse
saw increased performance when compared to the best performing nozzle in each
characteristic during the LHS raw data.

The parabolic nozzle geometry performed well with respect to the output pa-
rameters, especially the divergence efficiency. After the MDO process, the lowest
divergence efficiency recorded was 99.10 %, which is only a 0.7 % decrease over a
similar, best performing conical nozzle geometry[27]. The MDO Pareto front was
well defined, except in the high thrust region, where it can be extrapolated that fur-
ther performance may be gained should the parameter bounds be expanded. While
the maximisation of most parameters during the MDO process is indicative of fur-
ther performance gains outside of the parameter bounds, the maximisation of ∅c
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is indicative of key fluid dynamic behavioural differences between the millimetre
scale and metre scale. The change in behaviour due to boundary layer effects is the
increase in the throat smoothing radius, ∅c.

Novel findings produced by this study are as follows:

• Micro parabolic nozzles achieved much higher divergence efficiencies than
similar conical nozzles, providing evidence that metre scale research may still
be relevant despite the significant boundary layer effects.

• Parabolic nozzle expansion ratios (60 ≤ ϵ ≤ 120) have little effect on thrust
production at the micro scale, but nozzle length is an important quantity with
respect to exhaust maturity and divergence efficiency.

• Micro parabolic nozzle geometries differ from their metre scale counterparts,
where historical geometric parameters, like Rc (the smoothing radius), are sig-
nificantly larger.

6.1 Future work and recommendations

Further work on expanded parameter bounds while retaining simulation conver-
gence and quality can be undertaken, which would further expand and understand
the Pareto front, especially in the thrust aspect. Further, optimal values may be
found by expanding these bounds in the form of local minimums over more ge-
ometric parameter values for the high performance metric optimised cases. Geo-
metric values, like Rt, may be fixed in future studies to investigate other geometric
properties, and their effect on the thrust and specific impulse of a system more in
depth.

More in depth analysis of the parabolic nozzle geometry compared to the coni-
cal nozzle geometry can be initiated, where more direct comparisons may be com-
pleted. These may include comparisons with similar convergent and throat geome-
try, expansion ratio, and inlet conditions, where the difference lies exclusively in the
divergent region geometry.

Investigations into parabolic nozzles at different scales, specifically in respect to
the changing conditions, may be conducted. This would work to understand scale
dependant effects like the boundary layer effect. These losses may be characteristic
with respect to some geometric parameters, where an understanding of how sensi-
tive they each may be to the scale would be ultimately understood.

Finally, verification of results through construction and experimentation of a noz-
zle using a supersonic wind tunnel or unit testing on a physical system (such as the
MET) would complete the development of the nozzle and further validate the MDO
process used to optimise the performance.

Considering the novel nature of the work in this thesis, an article is in preparation
for publication to present Figures 4.5 to 4.7, and 5.2 to 5.9, alongside the optimised
values of the objective functions and nozzles geometric configuration.



51

Bibliography

[1] E. S. Agency, Space debris: Is it a crisis? https : / / www . esa . int / ESA _

Multimedia/Videos/2025/04/Space_Debris_Is_it_a_Crisis, [Accessed
29-10-2025], 2025.

[2] L. Conde and p. Institute of Physics (Great Britain), An introduction to plasma
physics and its space applications. Volume 2, Basic equations and applications (IOP
ebooks. [2020 collection]), eng. Bristol [England] (Temple Circus, Temple Way,
Bristol BS1 6HG, UK): IOP Publishing, 2020, ISBN: 0-7503-3542-4.

[3] S. H. Yeo, H. Ogawa, D. Kahnfeld, and R. Schneider, “Miniaturization per-
spectives of electrostatic propulsion for small spacecraft platforms,” Progress
in Aerospace Sciences, vol. 126, p. 100 742, 2021, ISSN: 0376-0421. DOI: https:
//doi.org/10.1016/j.paerosci.2021.100742.

[4] F. G. Hey, Micro Newton Thruster Development. Springer Fachmedien Wies-
baden, 2018, ISBN: 9783658212094. DOI: 10.1007/978-3-658-21209-4.

[5] A. Chandler Karp and E. T. Jens, Hybrid Rocket Propulsion Design Handbook, eng,
First edition. London, England: Academic Press, 2024, ISBN: 9780128165935.

[6] S. H. Yeo, D. Gadisa, H. Ogawa, and H. Bang, “Multi-objective design op-
timization and physics-based sensitivity analysis of field emission electric
propulsion for cubesat platforms,” Aerospace Science and Technology, vol. 154,
p. 109 516, 2024, ISSN: 1270-9638. DOI: https://doi.org/10.1016/j.ast.
2024.109516.

[7] A. Runchal and S. ( service), 50 Years of CFD in Engineering Sciences A Com-
memorative Volume in Memory of D. Brian Spalding, eng, 1st ed. 2020. Singapore:
Springer Singapore, 2020, ISBN: 9789811526701.

[8] F. Magoules, Computational fluid dynamics (Chapman and Hall/CRC numerical
analysis and scientific computation series), eng, 1st ed. Boca Raton: Chapman
and Hall/CRC, 2012, ISBN: 0-429-10757-9.

[9] D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning,
en. Boston, MA: Addison Wesley, Jan. 1989.

[10] K. D. Lihui Wang Amos H. C. Ng, Multi-objective Evolutionary Optimisa-
tion for Product Design and Manufacturing. Springer London, 2011, ISBN:
9780857296528. DOI: 10.1007/978-0-85729-652-8.

https://www.esa.int/ESA_Multimedia/Videos/2025/04/Space_Debris_Is_it_a_Crisis
https://www.esa.int/ESA_Multimedia/Videos/2025/04/Space_Debris_Is_it_a_Crisis
https://doi.org/https://doi.org/10.1016/j.paerosci.2021.100742
https://doi.org/https://doi.org/10.1016/j.paerosci.2021.100742
https://doi.org/10.1007/978-3-658-21209-4
https://doi.org/https://doi.org/10.1016/j.ast.2024.109516
https://doi.org/https://doi.org/10.1016/j.ast.2024.109516
https://doi.org/10.1007/978-0-85729-652-8


52 Bibliography

[11] Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary optimization of compu-
tationally expensive problems via surrogate modeling,” AIAA Journal, vol. 41,
no. 4, pp. 687–696, 2003. DOI: 10.2514/2.1999.

[12] A. S. Pillai, Introduction to rocket science and space exploration, eng. Palm Bay,
Florida ; Apple Academic Press, 2023, ISBN: 9781003323396.

[13] M. S. Kisenko, “Comparative results of tests on several different types of noz-
zles,” in National Advisory Committee for Aeronautics, vol. 1066, Central Aero-
Hydrodynamical Inistitue, 1944.

[14] G. V. R. RAO, “Exhaust nozzle contour for optimum thrust,” Journal of Jet
Propulsion, vol. 28, no. 6, pp. 377–382, 1958. DOI: 10.2514/8.7324.

[15] G. V. R. RAO, “Approximation of optimum thrust nozzle contour,” ARS Jour-
nal, vol. 30, no. 6, pp. 561–563, 1960. DOI: 10.2514/8.5151.

[16] E. Rathakrishnan and E. Rathakrishnan, “Method of characteristics,” eng, in
Applied Gas Dynamics, United Kingdom: John Wiley Sons, Incorporated, 2019,
pp. 309–328, ISBN: 9781119500452.

[17] J. S. Evans and C. J. Schexnayder Jr., “Influence of Chemical Kinetics and Un-
mixedness on Burning in Supersonic Hydrogen Flames,” AIAA Journal, vol. 18,
no. 2, pp. 188–193, Feb. 1980. DOI: 10.2514/3.50747.

[18] G. V. Candler and J. N. Perkins, “Effects of vibrational nonequilibrium on ax-
isymmetric hypersonic nozzle design,” in AIAA PAPAER 91-0297, 1991.

[19] G. Cai, J. Fang, X. Xu, and M. Liu, “Performance prediction and optimization
for liquid rocket engine nozzle,” Aerospace Science and Technology, vol. 11, no. 2,
pp. 155–162, 2007, ISSN: 1270-9638. DOI: https://doi.org/10.1016/j.ast.
2006.07.002.

[20] J. Bahamon and M. Martinez, “Study of fluid-dynamic behavior in a conver-
gent–divergent nozzle by shape optimization using evolutionary strategies al-
gorithms,” Proceedings of the Institution of Mechanical Engineers, Part G, vol. 237,
no. 12, pp. 2844–2862, 2023. DOI: 10.1177/09544100231163372.

[21] M. Matsunaga, C. Fujio, H. Ogawa, Y. Higa, and T. Handa, “Nozzle design
optimization for supersonic wind tunnel by using surrogate-assisted evolu-
tionary algorithms,” Aerospace Science and Technology, vol. 130, p. 107 879, 2022,
ISSN: 1270-9638. DOI: https://doi.org/10.1016/j.ast.2022.107879.

[22] G. P. Sutton and O. Biblarz, Rocket Propulsion Elements. New Delhi, India: Wi-
ley, Jan. 2010, ISBN: 9788126525775.

[23] F. L. Torre, “Gas flow in miniaturized nozzles for micro-thrusters,” Ph.D. dis-
sertation, Delft University of Technology, 2011.

[24] K. Suenaga, S. H. Yeo, T. Ozawa, and H. Ogawa, “Physical insights into down-
sized nozzle geometry for microwave electrothermal thruster via evolutionary
algorithms,” in AIAA SCITECH 2024 Forum, 2024. DOI: 10.2514/6.2024-2707.

https://doi.org/10.2514/2.1999
https://doi.org/10.2514/8.7324
https://doi.org/10.2514/8.5151
https://doi.org/10.2514/3.50747
https://doi.org/https://doi.org/10.1016/j.ast.2006.07.002
https://doi.org/https://doi.org/10.1016/j.ast.2006.07.002
https://doi.org/10.1177/09544100231163372
https://doi.org/https://doi.org/10.1016/j.ast.2022.107879
https://doi.org/10.2514/6.2024-2707


Bibliography 53

[25] F. Durst and S. ( service), Fluid Mechanics An Introduction to the Theory of
Fluid Flows (Graduate Texts in Physics), eng, 2nd ed. 2022. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2022, ISBN: 9783662639153.

[26] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh generator
with built-in pre- and post-processing facilities,” International Journal for Nu-
merical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331, 2009. DOI: https:
//doi.org/10.1002/nme.2579.

[27] M. Farrugia, K. Suenaga, S. H. Yeo, J. Gale, G. N. Iles, and H. Ogawa, “Multi-
point design optimisation of microwave electrothermal thruster nozzles for
robust in-space operation,” in IAF Space Propulsion Symposium, International
Astronautical Federation (IAF), 2025, p. x99999.

[28] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo Methods (Wiley
series in probability and statistics), eng, 1. Aufl. Hoboken, N.J: Wiley, 2011,
vol. 706, ISBN: 0470177934.

[29] I. Sobol, “Global sensitivity indices for nonlinear mathematical models and
their monte carlo estimates,” Mathematics and Computers in Simulation, vol. 55,
no. 1, pp. 271–280, 2001, The Second IMACS Seminar on Monte Carlo Meth-
ods, ISSN: 0378-4754. DOI: https://doi.org/10.1016/S0378-4754(00)00270-
6.

[30] A. B. Owen, “Orthogonal arrays for computer experiments, integration and
visualization,” Statistica Sinica, vol. 2, no. 2, pp. 439–452, 1992, ISSN: 10170405,
19968507. [Online]. Available: http://www.jstor.org/stable/24304869.

[31] “Multilayer perceptrons,” in Neural Networks in a Softcomputing Framework.
London: Springer London, 2006, pp. 57–139, ISBN: 978-1-84628-303-1. DOI: 10.
1007/1-84628-303-5_3.

[32] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE
Access, vol. 8, pp. 89 497–89 509, 2020. DOI: 10.1109/ACCESS.2020.2990567.

https://doi.org/https://doi.org/10.1002/nme.2579
https://doi.org/https://doi.org/10.1002/nme.2579
https://doi.org/https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/https://doi.org/10.1016/S0378-4754(00)00270-6
http://www.jstor.org/stable/24304869
https://doi.org/10.1007/1-84628-303-5_3
https://doi.org/10.1007/1-84628-303-5_3
https://doi.org/10.1109/ACCESS.2020.2990567




55

Appendix A

Code Extracts

A.1 Python Code

A.1.1 Mesh Generation Code

LISTING A.1: GMSH Bump Progression Solver

1 def f_transfinite(t, coef , length , nbpt):
2 # coef < 1 case (bump)
3 sqA = math.sqrt (1.0 - coef)
4 a = (2.0 * sqA * math.log(abs ((1.0 + 1.0 / sqA) / (1.0 - 1.0

/ sqA)))) / (nbpt * length)
5 b = -a * length **2 / (4.0 * (coef - 1.0)) # note coef - 1.0
6 d = length
7 return d / (-a * (t * length - 0.5 * length)**2 + b)
8

9 def integrate_val(val_func , length , coef , npts , samples =2000):
10 ts = np.linspace(0, 1, samples)
11 vals = np.array([ val_func(ti, coef , length , npts) for ti in

ts])
12 p = np.cumsum ((vals [:-1] + vals [1:]) * (ts[1] - ts[0]) /

2.0)
13 p = np.insert(p, 0, 0.0)
14 return ts, p
15

16 def compute_node_ts(ts , p, N):
17 total_p = p[-1]
18 b = total_p / (N - 1)
19 target_ps = [k * b for k in range(N)]
20 return np.interp(target_ps , p, ts)
21

22 def first_cell_size_bump(coef , length , n):
23 ts , p = integrate_val(f_transfinite , length , coef , n)
24 t_nodes = compute_node_ts(ts, p, n)
25 return t_nodes [1]* length
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LISTING A.2: Nozzle geometric definition

1 unit_scale = 0.001 # units are default in metres
2

3 # Geometry inputs
4 rt = X[1] * unit_scale # throat radius
5 rc = X[2] * unit_scale # radius of throat circle
6 exsp = X[3] # expansion ratio
7 qy = X[4] # Q y position as % of vertical dist from N to E
8 thetaN = X[5] # theta N
9

10 # Geometry constants
11 thetaE = 21.6 # Converging entrance angle
12 Rent = 3.8 * unit_scale # Converging entrance radius
13 El = 0.51 * unit_scale # Entry length (ie how long the throat is

b/w converging and diverging section)
14

15 # Entrance circle point
16 tc = (thetaE - 90) * math.pi / 180
17 cex = -El + rc * math.cos(tc)
18 cey = rc * math.sin(tc) + rc + rt
19

20 # Entry section
21 es = 0
22 ee = (Rent - cey) / math.sin(thetaE * math.pi / 180)
23 cx = -ee * math.cos(thetaE * math.pi / 180) - cex
24 cy = cey + ee * math.sin(thetaE * math.pi / 180)
25

26 # Throat
27 te = (thetaN - 90) * math.pi / 180
28 nx = rc * math.cos(te)
29 ny = rc * math.sin(te) + rc + rt
30

31 # Exit
32 Re = math.sqrt(exsp) * rt
33 Ln = (0.8 * (math.sqrt(exsp) - 1) * rt) / math.tan(15 * math.pi

/ 180)
34 ex = Ln
35 ey = Re
36

37 # Q point
38 qx = qy * (ey - ny) / math.tan(thetaN * math.pi / 180) + nx
39 qy = qy * (ey - ny) + ny
40

41 # Constant / defined points of the nozzle ’s parabola
42 Nx , Ny = nx, ny
43 Qx , Qy = qx, qy
44 Ex , Ey = ex, ey
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A.1.2 Automatic Fluent Control and Execution

LISTING A.3: Pyfluent implementation to run ANSYS Fluent

1 if not os.getenv(’FLUENT_PROD_DIR ’):
2 import ansys.fluent.core as pyfluent
3 try:
4 flglobals = pyfluent.setup_for_fluent(

product_version="25.2.0", mode="solver",
dimension=2, precision="double", processor_count
=4, graphics_driver="dx11", ui_mode="gui")

5 except:
6 flglobals = pyfluent.setup_for_fluent(

product_version="25.1.0", mode="solver",
dimension=2, precision="double", processor_count
=4, graphics_driver="dx11", ui_mode="gui")

7 globals ().update(flglobals)
8

9 # Bring in case file
10 cur_dir = os.getcwd ()
11 #sim_file = cur_dir + "/ case_files /" + my_file_name + "/

Gmsh_output/case_1.cas.h5"
12 sim_file = cur_dir + "/case_files/" + my_file_name + ".cas.

h5"
13 solver.settings.file.read_case(file_name = sim_file)
14

15 save_folder = "sim_results/" + my_file_name
16 try: os.mkdir(save_folder)
17 except Exception as e: pass
18

19 # Define settings
20 solver.settings.setup.general.solver.type = "density -based -

implicit"
21 solver.settings.setup.general.solver.two_dim_space = "

axisymmetric"
22 solver.settings.setup.models.energy = {"enabled" : True}
23 solver.settings.setup.models.viscous.model = "laminar"
24 solver.settings.setup.materials.database.copy_by_name(type =

"fluid", name = "argon")
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25 solver.settings.setup.materials.fluid[’argon’] = {"density"
: {"option" : "ideal -gas"}, "viscosity" : {"sutherland"
: {"effective_temperature" : 144.4 , "
reference_temperature" : 273.11 , "reference_viscosity" :
2.125e-05, "option" : "three -coefficient -method"}, "

option" : "sutherland"}, "thermal_conductivity" : {"
option" : "kinetic -theory"}, "molecular_weight" : {"
value" : 39.948 , "option" : "constant"}, "
lennard_jones_length" : {"value" : 4, "option" : "
constant"}, "lennard_jones_energy" : {"value" : 100, "
option" : "constant"}}

26 solver.settings.setup.cell_zone_conditions.fluid["fluid"].
general.material = ("argon")

27 solver.settings.setup.cell_zone_conditions.fluid["vacuum"].
general.material = ("argon")

28 solver.settings.setup.boundary_conditions.set_zone_type(
zone_list = ["inlet"], new_type = "pressure -inlet")

29 solver.settings.setup.boundary_conditions.set_zone_type(
zone_list = ["outlet"], new_type = "pressure -outlet")

30 solver.settings.setup.boundary_conditions.set_zone_type(
zone_list = ["wall -58", "wall -59", "wall -60", "wall -61",
"wall -62", "wall -63"], new_type = "axis")

31 solver.execute_tui("/mesh/check")
32 solver.execute_tui("/mesh/repair -improve/repair")
33 # Note: supersonic_or_initial_gauge_pressure is the value to

change , gauge_total_pressure stays constant
34 solver.settings.setup.boundary_conditions.pressure_inlet[’

inlet’] = {"momentum" : {"
supersonic_or_initial_gauge_pressure" : {"value" :
_settings_master.inlet_pressure}, "gauge_total_pressure"
: {"value" : 54000.}} , "thermal" : {"total_temperature"
: {"value" : _settings_master.inlet_temperature }}}

35 solver.settings.setup.boundary_conditions.pressure_outlet[’
outlet ’] = {"momentum" : {"gauge_pressure" : {"value" :
_settings_master.outlet_pressure }}}

36 solver.settings.setup.general.operating_conditions.
operating_pressure = 0.

37 solver.settings.setup.reference_values.zone = "vacuum"
38 solver.settings.setup.reference_values.area = 1.
39 solver.settings.setup.reference_values.density = 1.225
40 solver.settings.setup.reference_values.enthalpy = 0.
41 solver.settings.setup.reference_values.length = 1.
42 solver.settings.setup.reference_values.pressure = 0.
43 solver.settings.setup.reference_values.temperature = 288.16
44 solver.settings.setup.reference_values.velocity = 1.
45 solver.settings.setup.reference_values.viscosity = 1.7894e-5
46 solver.settings.setup.reference_values.

ratio_of_specific_heats = 1.4
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47 solver.settings.setup.reference_values.yplus = 300.
48 solver.settings.setup.reference_values.compute(

from_zone_type="pressure -inlet")
49 solver.settings.solution.methods.high_speed_numerics.enable

= True
50 solver.settings.solution.methods.spatial_discretization.

gradient_scheme = "green -gauss -cell -based"
51 solver.settings.solution.initialization.initialization_type

= "hybrid"
52 solver.settings.solution.initialization.hybrid_init_options.

general_settings = {"iter_count" : 200}
53 solver.settings.solution.initialization.hybrid_initialize ()
54 solver.settings.file.read_journal(file_name_list =["

solution_steering.jou"])
55 solver.settings.solution.monitor.residual.equations[’

continuity ’]. absolute_criteria = 1e-04
56 solver.settings.solution.monitor.residual.equations[’x-

velocity ’]. absolute_criteria = 1e-05
57 solver.settings.solution.monitor.residual.equations[’y-

velocity ’]. absolute_criteria = 1e-06
58 solver.settings.solution.monitor.residual.equations[’energy ’

]. absolute_criteria = _settings_master.energy_limit
59 solver.settings.solution.monitor.residual.equations[’

continuity ’]. check_convergence = False
60 solver.settings.solution.monitor.residual.equations[’x-

velocity ’]. check_convergence = False # Keisuke doesn ’t
check x-velocity

61 solver.settings.solution.monitor.residual.equations[’y-
velocity ’]. check_convergence = False

62 solver.settings.solution.monitor.residual.equations[’energy ’
]. check_convergence = True

63 solver.settings.file.read_journal(file_name_list =["residual.
jou"])

64

65 residuals_report = "plot/residuals -set/plot -to-file " +
save_folder + "/residuals.csv"

66 solver.execute_tui(residuals_report)
67 solver.execute_tui("/plot/residuals")
68 solver.settings.solution.monitor.residual.options.n_save =

iterations
69

70 # Run simulation
71 solver.settings.solution.run_calculation.iterate(iter_count

= iterations)
72

73 # Results
74 pressure_contour = solver.settings.results.graphics.contour.

create(name = "Pressure contour")
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75 pressure_contour.field = "total -pressure"
76 pressure_contour.display ()
77 solver.settings.results.graphics.views.auto_scale ()
78 pressure_pic = save_folder + "/total -pressure -contour.png"
79 solver.settings.results.graphics.picture.save_picture(

file_name=pressure_pic)
80 mach_no_contour = solver.settings.results.graphics.contour.

create(name = "Mach No. contour")
81 mach_no_contour.field = "mach -number"
82 mach_no_contour.display ()
83 solver.settings.results.graphics.views.auto_scale ()
84 machno_pic = save_folder + "/mach -no-contour.png"
85 solver.settings.results.graphics.picture.save_picture(

file_name=machno_pic)
86 velocity_contour = solver.settings.results.graphics.contour.

create(name = "Velocity contour")
87 velocity_contour.field = "velocity -magnitude"
88 velocity_contour.display ()
89 solver.settings.results.graphics.views.auto_scale ()
90 velocity_pic = save_folder + "/velocity -magnitude -contour.

png"
91 solver.settings.results.graphics.picture.save_picture(

file_name=velocity_pic)
92

93 # Save data
94 case_data = save_folder + "/" + my_file_name + "_done.cas.h5

"
95 solver.settings.file.write(file_type="case -data", file_name=

case_data)
96

97 # Write mass flow rate data to .txt file
98 fluxes_report = save_folder + "/mass_flow_rate.txt"
99 solver.settings.results.report.fluxes.mass_flow(zones =["

inlet", "interface -interface"],write_to_file=True ,
file_name=fluxes_report)

100

101 profiles_report = "file/write -profile " + save_folder + "/
profiles.csv inlet interface -interface () pressure total
-pressure density velocity -magnitude axial -velocity
radial -velocity mach -number lambda2 -criterion
temperature total -temperature wall -temp cell -partition -
active cell -partition -stored partition -neighbors"

102 partition -active cell -partition -stored partition -neighbors"
103 solver.execute_tui(profiles_report)
104
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105 pressure_report = "file/write -profile " + save_folder + "/
pressure.csv wall -58 wall -59 wall -60 wall -61 wall -62
wall -63 () dynamic -pressure absolute -pressure total -
pressure"

106 solver.execute_tui(pressure_report)
107

108 # End session
109 solver.exit()

A.2 MATLAB Code

A.2.1 Convergence Criteria

LISTING A.4: Ensuring specific impulse does not exceed theortical
maximum value

1 function [T_ideal ,Isp_ideal ,mdot_ideal ,pe] = cal_ideal(a_r)
2 pa = 13.0;
3 sigma = 0.7262;
4 R = 208.11;
5 A_thr = pi * rt^2 * 10^ -6; % millimetres to metres

conversion
6 T0 = 1200;
7 p0 = 150000;
8 mdot_ideal = p0 * A_thr * sigma / (sqrt(R * T0));
9 kappa = 1.66667;

10

11 Ae = pi * re^2 * 10^-6;
12

13 fun = @(Me) root3d(a_r ,kappa ,Me);
14 Me = fsolve(fun ,2);
15

16 pe_p0 = 1/(1 + (kappa - 1)/2.0 * Me^2)^(kappa /(kappa -1.0));
17

18 pe = pe_p0 * p0;
19

20 ue = sqrt (2.0* kappa*R*T0/(kappa -1.0) * (1-pe_p0)^((kappa -1)/
kappa));

21 T_ideal = mdot_ideal * ue + (pe) * Ae;
22 Isp_ideal = T_ideal / (mdot_ideal * 9.8);
23 end
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Appendix B

Initial Parameter Simulation
Sensitivity Analysis

The sensitivity of simulation convergence with respect to geometric parameters was
conducted in two parts. The ranges of values for each parameter in the parametric
study and MDO were initially set to those outlined in table 3.3, with the final values
used as found stable by the following analyses outlined in table 3.4.

B.1 Part 1 - Using a LHS

FIGURE B.1: The sensitivity of each parameter with respect to solu-
tion outcome.

This analysis was conducted using a LHS of dimension M = 20. The initial ranges
of values was tied to those displayed in table 3.3. A grade was given to each case
with respect to three simulation outputs: the mass flow rate difference between the
inlet and interface, the pressure contour of the exhaust flow through the nozzle,
and the pressure plot along the axis. High scoring nozzles performed well in all
three aspects, while low scoring nozzles performed poorly or outright failed in all
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aspects. Figure B.2 illustrates the pressure of a converged case and a diverged case,
where convergence is evident by the smooth and continuous pressure distribution,
alongside only a small drop in pressure along the entirety of the axis; the diverged
case has a sharp drop in pressure, which is discontinuous. This was then fed into the
Python SALib packages delta function, which is a tool used to correlate a sensitivity
analysis and link parameters to outcomes. This package works best with data that
was initially generated using a LHS type structure.

FIGURE B.2: Pressure plot along nozzle central axis of (Left) Con-
verged case vs (Right) Diverged case.

The small population of the study limited the accuracy of the regression model,
as is illustrated by figure B.1. While all values had relatively low confidence, θN

was found to be most important to the outcome. Figure B.3 illustrates the range of
values present in cases which produced good and bad outcomes (good indicative of
an outcome with a score higher than 0.85/1).

A random forest was also generated using the sci-kit learn Python package. The
random forest algorithm is at its core a best-split decision-tree classifier, which may
be used to estimate and predict outcomes based on model data. The core principles
are those of regression analysis. The outcomes of this analysis on the model and data
provided are illustrated in figure B.4.

In the context of this analysis, the random forest gives a prediction as to the
sensitivity of a value to the convergence of a solution. As such, it confirms that θN

and ϵ are very sensitive with respect to a solution achieving a realistic fluid flow.
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FIGURE B.3: The range of values prescribed to each parameter in
good vs bad case outcomes.

FIGURE B.4: Random forest prediction of most important parameters
for solution outcome.
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B.2 Part 2 - Static confirmation

The static confirmation was conducted in parallel to the sensitivity analysis de-
scribed in chapter 4, by first identifying a case which produced desirable results.
Then, all parameters were held constant while one was varied between a maximum
and minimum bounds. Table B.1 shows all case geometric parameters, along with
their output parameters. Cases 21 and 51, both with θN values above 28.2◦, failed
to converge with respect to their pressure contour plots. This affirms the method
described above to identify safe bounds. The study also provided an opportunity to
tentatively test expanding the other bounds which showed little correlation to con-
vergence failure. These bounds were further tested in an expanded parameter test
using a LHS of dimension M = 20, of which 14 passed. The implicit value of θE was
then calculated for each case, which had very strong correlation to the remaining
non-convergence cases. Removing cases which generated with values of θE below
6.5◦ further improved convergence. Out of a test using a LHS of dimension M = 20,
19 were deemed to have converged.
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TABLE B.1: Case input parameters and result parameters of the sec-
ond sensitivity analysis.

Case No. Rt rc ϵ δ θN T Taxial ηD Isp Converged
Unit mm mm ◦ N N % s

1 0.67 0.86 71.39 0.78 23.79 0.11 0.10 99.52 108.45 1
2 0.50 0.86 71.39 0.78 23.79 0.06 0.06 99.47 107.57 1
3 0.83 0.86 71.39 0.78 23.79 0.17 0.17 99.53 109.05 1
4 1.16 0.86 71.39 0.78 23.79 0.33 0.33 99.48 109.83 1
5 1.50 0.86 71.39 0.78 23.79 0.56 0.56 99.40 110.36 1
6 0.67 0.60 71.39 0.78 23.79 0.10 0.10 99.53 108.42 1
7 0.67 0.73 71.39 0.78 23.79 0.11 0.10 99.52 108.43 1
8 0.67 0.93 71.39 0.78 23.79 0.11 0.10 99.52 108.45 1
9 0.67 1.00 71.39 0.78 23.79 0.11 0.11 99.52 108.46 1
10 0.67 0.86 50.00 0.78 23.79 0.11 0.10 99.49 108.46 1
11 0.67 0.86 83.00 0.78 23.79 0.11 0.10 99.52 108.42 1
12 0.67 0.86 116.00 0.78 23.79 0.11 0.10 99.52 108.31 1
13 0.67 0.86 150.00 0.78 23.79 0.11 0.10 99.51 108.21 1
14 0.67 0.86 71.39 0.70 23.79 0.11 0.10 99.49 108.48 1
15 0.67 0.86 71.39 0.85 23.79 0.11 0.10 99.54 108.42 1
16 0.67 0.86 71.39 0.92 23.79 0.11 0.10 99.56 108.40 1
17 0.67 0.86 71.39 1.00 23.79 0.11 0.10 99.58 108.38 1
18 0.67 0.86 71.39 0.78 20.00 0.11 0.10 99.14 108.97 1
19 0.67 0.86 71.39 0.78 26.00 0.11 0.10 99.59 108.21 1
20 0.67 0.86 71.39 0.78 23.00 0.11 0.10 99.48 108.54 1
21 0.67 0.86 71.39 0.78 29.00 0.10 0.10 99.64 107.88 0
22 0.40 0.86 71.39 0.78 23.79 0.04 0.04 99.40 106.76 1
23 0.64 0.86 71.39 0.78 23.79 0.10 0.10 99.52 108.33 1
24 0.88 0.86 71.39 0.78 23.79 0.19 0.19 99.52 109.19 1
25 1.12 0.86 71.39 0.78 23.79 0.31 0.31 99.52 109.18 1
26 1.36 0.86 71.39 0.78 23.79 0.46 0.46 99.47 109.63 1
27 1.60 0.86 71.39 0.78 23.79 0.65 0.64 99.41 110.00 1
28 0.67 0.63 71.39 0.78 23.79 0.10 0.10 99.53 108.42 1
29 0.67 0.70 71.39 0.78 23.79 0.11 0.10 99.53 108.44 1
30 0.67 0.76 71.39 0.78 23.79 0.11 0.10 99.52 108.44 1
31 0.67 0.83 71.39 0.78 23.79 0.11 0.10 99.52 108.44 1
32 0.67 0.89 71.39 0.78 23.79 0.11 0.10 99.53 108.46 1
33 0.67 0.96 71.39 0.78 23.79 0.11 0.11 99.52 108.45 1
34 0.67 0.86 55.00 0.78 23.79 0.11 0.10 99.50 108.46 1
35 0.67 0.86 73.00 0.78 23.79 0.11 0.10 99.52 108.44 1
36 0.67 0.86 91.00 0.78 23.79 0.11 0.10 99.53 108.39 1
37 0.67 0.86 109.00 0.78 23.79 0.11 0.10 99.53 108.35 1
38 0.67 0.86 127.00 0.78 23.79 0.11 0.10 99.52 108.27 1
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39 0.67 0.86 145.00 0.78 23.79 0.11 0.10 99.51 108.20 1
40 0.67 0.86 71.39 0.68 23.79 0.11 0.10 99.49 108.49 1
41 0.67 0.86 71.39 0.73 23.79 0.11 0.10 99.50 108.47 1
42 0.67 0.86 71.39 0.79 23.79 0.11 0.10 99.52 108.44 1
43 0.67 0.86 71.39 0.83 23.79 0.11 0.10 99.53 108.43 1
44 0.67 0.86 71.39 0.91 23.79 0.11 0.10 99.56 108.40 1
45 0.67 0.86 71.39 0.97 23.79 0.11 0.10 99.57 108.39 1
46 0.67 0.86 71.39 0.78 21.00 0.11 0.10 99.28 108.80 1
47 0.67 0.86 71.39 0.78 22.80 0.11 0.11 99.53 107.83 1
48 0.67 0.86 71.39 0.78 24.60 0.11 0.11 99.60 107.62 1
49 0.67 0.86 71.39 0.78 26.40 0.11 0.11 99.64 107.32 1
50 0.67 0.86 71.39 0.78 28.20 0.11 0.11 99.68 106.96 1
51 0.67 0.86 71.39 0.78 30.00 0.11 0.11 99.67 107.04 0



69

Appendix C

Alternative MDO Results

A brief investigation into an alternative MDO solution was conducted using python
and the pymoo package[32]. A NSGA-II algorithm was used, with surrogate mod-
els trained on the parametric studies set of data. 200 individuals were processed
through 100 generations of a SAEA.

C.1 Results

All output parameters were trained using a hybrid surrogate model, using both krig-
ing and radial basis functions. The accuracy of these models was determined to be
very high, with the root mean square error of the models being less than 0.01%.
Given high confidence, the model was allowed to estimate output parameters ex-
ceeding the input data range by up to 20%.

FIGURE C.1: MDO progress visualised, alongside the active genera-
tion plotted against the objective functions.

Figure C.1 illustrates the final output parameters of the 200th generation, along-
side the training residuals over the MDO algorithm. The fitness of the generations
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improved rapidly during the initial 20 iterations, and found balance by the 40th it-
eration. Past 50 iterations, little improvement was found, as the pareto front was
generally well resolved by this point.

FIGURE C.2: Final generation of the MDO, plotted against their out-
put parameters and coloured by thrust value (thrust vs specific im-

pulse).

FIGURE C.3: Final generation of the MDO, plotted against their out-
put parameters and coloured by thrust value (specific impulse vs di-

vergent efficiency).
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FIGURE C.4: Final generation of the MDO, plotted against their out-
put parameters and coloured by thrust value (divergent efficiency vs

thrust).

Figures C.2, C.3, and C.4 illustrate the final iteration of the MDO process using
python. All points represent non-dominated individuals, and are colour coded by
the estimated thrust of the individual. While clear relationships are present, the iso-
lated high Isp low thrust group is indicative of local maximums being found. Since
the pareto front is non-continuous, the validity of the result is pulled into question.

C.2 Verification of Results

Three distinct cases were extracted from the final generation to examine their output
parameters and verify the MDO results by conducting CFD simulations within AN-
SYS. The three cases chosen to be examined are each of the top performing output
parameter cases: highest thrust, divergence efficiency, and specific impulse respec-
tively.
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C.2.1 High Thrust Case

TABLE C.1: High thrust geometric parameters derived through
python MDO

Decision Variable Value Unit

Rt 1.199 mm
ϵ 119.9 -

θN 20.47 ◦

δ 0.700 -
∅c 0.938 mm
∅d 0.938 mm

FIGURE C.5: CFD pressure contour of the high thrust case.

FIGURE C.6: CFD mach number contour of the high thrust case.
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FIGURE C.7: CFD velocity contour of the high thrust case.

TABLE C.2: High thrust output parameters derived through python
MDO

Output Estimated Value Simulated Value Unit Difference (%)

Thrust 0.362 0.358 N -1.105
Divergence Efficiency 99.35 99.28 % -0.070

Specific Impulse 109.1 110.3 s 1.100

The surrogate models and MDO process was validated using a CFD simulation of
the nozzle geometry using the parameters generated. This case was simulated for
100000 iterations and converged with good residual values and excellent flow con-
tour fields, as illustrated in Figures C.5, C.6, and C.7. The simulated values are com-
pared to the estimated values in Table C.2. The thrust and divergence efficiency was
overestimated, while the specific impulse was underestimated; all values are similar
to their estimated counterparts with the largest difference being only 1.105%.

C.2.2 High Specific Impulse Case

TABLE C.3: High specific impulse geometric parameters derived
through python MDO

Decision Variable Value Unit

Rt 1.199 mm
ϵ 119.9 -

θN 25.49 ◦

δ 0.884 -
∅c 0.850 mm
∅d 0.850 mm
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FIGURE C.8: CFD pressure contour of the high specific impulse case.

FIGURE C.9: CFD mach number contour of the high specific impulse
case.

FIGURE C.10: CFD velocity contour of the high specific impulse case.
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TABLE C.4: High specific impulse output parameters derived
through python MDO

Output Estimated Value Simulated Value Unit Difference (%)

Thrust 0.357 0.356 N -0.280
Divergence Efficiency 99.69 99.64 % -0.050

Specific Impulse 110.4 109.7 s -0.634

The high specific impulse nozzle was simulated for 100000 iterations and converged
with good residual values but very poor flow contour fields, as illustrated promi-
nently in Figure C.5. Severe flow splitting can be observed downstream of the nozzle
exit, which effects nozzle convergence. Thus, confidence in the results produced via
this simulation are very low. While the estimated nozzle outputs are very similar to
the actual simulated value from CFD simulation (albeit universally underestimated)
the actual values undermine the key performance metric of this nozzle. The actual
specific impulse value is lower than that of the actual specific impulse of the high
thrust nozzle. This can be attributed to the bad convergence of the flow fields via
flow splitting.

C.2.3 High Divergence Efficiency Case

TABLE C.5: High divergence efficiency geometric parameters derived
through python MDO

Decision Variable Value Unit

Rt 1.199 mm
ϵ 119.9 -

θN 25.49 ◦

δ 0.700 -
∅c 0.997 mm
∅d 0.997 mm



76 Appendix C. Alternative MDO Results

FIGURE C.11: CFD pressure contour of the high divergence efficiency
case.

FIGURE C.12: CFD mach number contour of the high divergence ef-
ficiency case.

FIGURE C.13: CFD velocity contour of the high divergence efficiency
case.



C.2. Verification of Results 77

TABLE C.6: High divergence efficiency geometric parameters derived
through python MDO

Output Estimated Value Simulated Value Unit Difference (%)

Thrust 0.361 0.357 N -1.108
Divergence Efficiency 99.80 99.61 % -0.190

Specific Impulse 110.0 109.8 s -0.182

The high divergence efficiency nozzle was simulated for 100000 iterations and con-
verged with good residual values but poor flow contour fields, as illustrated promi-
nently in Figure C.5. Flow splitting can be observed downstream of the nozzle exit,
which effects nozzle convergence. Thus, confidence in the results produced via this
simulation are low. However, the thrust and divergence efficiency accuracy was
similar to those of the high thrust case, as shown in Table C.6. However, the spe-
cific impulse was overestimated, which can be linked to the flow splitting. Further,
the actual divergence efficiency was less than the actual divergence efficiency of the
high specific impulse nozzle, further undermining the key performance metric of
this nozzle.

All three nozzles maximised the Rt and ϵ input parameters to maximise the
thrust of the nozzles, while θN , δ, and ∅c,d were varied to induce more specific im-
pulse or divergence efficiency of the nozzle (as indicated by the sensitivity analysis).
However, due to the insufficient confidence in the results due to the flow splitting
effects, the nozzle geometries produced via the SAEA and MDO conducted using
python cannot be used nor recommended with good confidence.
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